mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			615 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			615 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
import argparse
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import cv2
 | 
						|
import numpy as np
 | 
						|
import paddle
 | 
						|
from PIL import Image, ImageDraw, ImageFont
 | 
						|
import math
 | 
						|
from paddle import inference
 | 
						|
import time
 | 
						|
from ppocr.utils.logging import get_logger
 | 
						|
 | 
						|
 | 
						|
def str2bool(v):
 | 
						|
    return v.lower() in ("true", "t", "1")
 | 
						|
 | 
						|
 | 
						|
def init_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    # params for prediction engine
 | 
						|
    parser.add_argument("--use_gpu", type=str2bool, default=True)
 | 
						|
    parser.add_argument("--ir_optim", type=str2bool, default=True)
 | 
						|
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
 | 
						|
    parser.add_argument("--min_subgraph_size", type=int, default=15)
 | 
						|
    parser.add_argument("--precision", type=str, default="fp32")
 | 
						|
    parser.add_argument("--gpu_mem", type=int, default=500)
 | 
						|
 | 
						|
    # params for text detector
 | 
						|
    parser.add_argument("--image_dir", type=str)
 | 
						|
    parser.add_argument("--det_algorithm", type=str, default='DB')
 | 
						|
    parser.add_argument("--det_model_dir", type=str)
 | 
						|
    parser.add_argument("--det_limit_side_len", type=float, default=960)
 | 
						|
    parser.add_argument("--det_limit_type", type=str, default='max')
 | 
						|
 | 
						|
    # DB parmas
 | 
						|
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
 | 
						|
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
 | 
						|
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
 | 
						|
    parser.add_argument("--max_batch_size", type=int, default=10)
 | 
						|
    parser.add_argument("--use_dilation", type=str2bool, default=False)
 | 
						|
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
 | 
						|
    # EAST parmas
 | 
						|
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
 | 
						|
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
 | 
						|
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
 | 
						|
 | 
						|
    # SAST parmas
 | 
						|
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
 | 
						|
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
 | 
						|
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
 | 
						|
 | 
						|
    # PSE parmas
 | 
						|
    parser.add_argument("--det_pse_thresh", type=float, default=0)
 | 
						|
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
 | 
						|
    parser.add_argument("--det_pse_min_area", type=float, default=16)
 | 
						|
    parser.add_argument("--det_pse_box_type", type=str, default='box')
 | 
						|
    parser.add_argument("--det_pse_scale", type=int, default=1)
 | 
						|
 | 
						|
    # params for text recognizer
 | 
						|
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
 | 
						|
    parser.add_argument("--rec_model_dir", type=str)
 | 
						|
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
 | 
						|
    parser.add_argument("--rec_batch_num", type=int, default=6)
 | 
						|
    parser.add_argument("--max_text_length", type=int, default=25)
 | 
						|
    parser.add_argument(
 | 
						|
        "--rec_char_dict_path",
 | 
						|
        type=str,
 | 
						|
        default="./ppocr/utils/ppocr_keys_v1.txt")
 | 
						|
    parser.add_argument("--use_space_char", type=str2bool, default=True)
 | 
						|
    parser.add_argument(
 | 
						|
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
 | 
						|
    parser.add_argument("--drop_score", type=float, default=0.5)
 | 
						|
 | 
						|
    # params for e2e
 | 
						|
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
 | 
						|
    parser.add_argument("--e2e_model_dir", type=str)
 | 
						|
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
 | 
						|
    parser.add_argument("--e2e_limit_type", type=str, default='max')
 | 
						|
 | 
						|
    # PGNet parmas
 | 
						|
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
 | 
						|
    parser.add_argument(
 | 
						|
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
 | 
						|
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
 | 
						|
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
 | 
						|
 | 
						|
    # params for text classifier
 | 
						|
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
 | 
						|
    parser.add_argument("--cls_model_dir", type=str)
 | 
						|
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
 | 
						|
    parser.add_argument("--label_list", type=list, default=['0', '180'])
 | 
						|
    parser.add_argument("--cls_batch_num", type=int, default=6)
 | 
						|
    parser.add_argument("--cls_thresh", type=float, default=0.9)
 | 
						|
 | 
						|
    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
 | 
						|
    parser.add_argument("--cpu_threads", type=int, default=10)
 | 
						|
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
 | 
						|
    parser.add_argument("--warmup", type=str2bool, default=False)
 | 
						|
 | 
						|
    #
 | 
						|
    parser.add_argument(
 | 
						|
        "--draw_img_save_dir", type=str, default="./inference_results")
 | 
						|
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
 | 
						|
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
 | 
						|
 | 
						|
    # multi-process
 | 
						|
    parser.add_argument("--use_mp", type=str2bool, default=False)
 | 
						|
    parser.add_argument("--total_process_num", type=int, default=1)
 | 
						|
    parser.add_argument("--process_id", type=int, default=0)
 | 
						|
 | 
						|
    parser.add_argument("--benchmark", type=str2bool, default=False)
 | 
						|
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
 | 
						|
 | 
						|
    parser.add_argument("--show_log", type=str2bool, default=True)
 | 
						|
    parser.add_argument("--use_onnx", type=str2bool, default=False)
 | 
						|
    return parser
 | 
						|
 | 
						|
 | 
						|
def parse_args():
 | 
						|
    parser = init_args()
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
 | 
						|
def create_predictor(args, mode, logger):
 | 
						|
    if mode == "det":
 | 
						|
        model_dir = args.det_model_dir
 | 
						|
    elif mode == 'cls':
 | 
						|
        model_dir = args.cls_model_dir
 | 
						|
    elif mode == 'rec':
 | 
						|
        model_dir = args.rec_model_dir
 | 
						|
    elif mode == 'table':
 | 
						|
        model_dir = args.table_model_dir
 | 
						|
    else:
 | 
						|
        model_dir = args.e2e_model_dir
 | 
						|
 | 
						|
    if model_dir is None:
 | 
						|
        logger.info("not find {} model file path {}".format(mode, model_dir))
 | 
						|
        sys.exit(0)
 | 
						|
    if args.use_onnx:
 | 
						|
        import onnxruntime as ort
 | 
						|
        model_file_path = model_dir
 | 
						|
        if not os.path.exists(model_file_path):
 | 
						|
            raise ValueError("not find model file path {}".format(
 | 
						|
                model_file_path))
 | 
						|
        sess = ort.InferenceSession(model_file_path)
 | 
						|
        return sess, sess.get_inputs()[0], None, None
 | 
						|
 | 
						|
    else:
 | 
						|
        model_file_path = model_dir + "/inference.pdmodel"
 | 
						|
        params_file_path = model_dir + "/inference.pdiparams"
 | 
						|
        if not os.path.exists(model_file_path):
 | 
						|
            raise ValueError("not find model file path {}".format(
 | 
						|
                model_file_path))
 | 
						|
        if not os.path.exists(params_file_path):
 | 
						|
            raise ValueError("not find params file path {}".format(
 | 
						|
                params_file_path))
 | 
						|
 | 
						|
        config = inference.Config(model_file_path, params_file_path)
 | 
						|
 | 
						|
        if hasattr(args, 'precision'):
 | 
						|
            if args.precision == "fp16" and args.use_tensorrt:
 | 
						|
                precision = inference.PrecisionType.Half
 | 
						|
            elif args.precision == "int8":
 | 
						|
                precision = inference.PrecisionType.Int8
 | 
						|
            else:
 | 
						|
                precision = inference.PrecisionType.Float32
 | 
						|
        else:
 | 
						|
            precision = inference.PrecisionType.Float32
 | 
						|
 | 
						|
        if args.use_gpu:
 | 
						|
            gpu_id = get_infer_gpuid()
 | 
						|
            if gpu_id is None:
 | 
						|
                logger.warning(
 | 
						|
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jeston."
 | 
						|
                )
 | 
						|
            config.enable_use_gpu(args.gpu_mem, 0)
 | 
						|
            if args.use_tensorrt:
 | 
						|
                config.enable_tensorrt_engine(
 | 
						|
                    workspace_size=1 << 30,
 | 
						|
                    precision_mode=precision,
 | 
						|
                    max_batch_size=args.max_batch_size,
 | 
						|
                    min_subgraph_size=args.min_subgraph_size)
 | 
						|
                # skip the minmum trt subgraph
 | 
						|
            if mode == "det":
 | 
						|
                min_input_shape = {
 | 
						|
                    "x": [1, 3, 50, 50],
 | 
						|
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
 | 
						|
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
 | 
						|
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
 | 
						|
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
 | 
						|
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
 | 
						|
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
 | 
						|
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
 | 
						|
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
 | 
						|
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
 | 
						|
                    "elementwise_add_7": [1, 56, 2, 2],
 | 
						|
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
 | 
						|
                }
 | 
						|
                max_input_shape = {
 | 
						|
                    "x": [1, 3, 1280, 1280],
 | 
						|
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
 | 
						|
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
 | 
						|
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
 | 
						|
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
 | 
						|
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
 | 
						|
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
 | 
						|
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
 | 
						|
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
 | 
						|
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
 | 
						|
                    "elementwise_add_7": [1, 56, 400, 400],
 | 
						|
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
 | 
						|
                }
 | 
						|
                opt_input_shape = {
 | 
						|
                    "x": [1, 3, 640, 640],
 | 
						|
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
 | 
						|
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
 | 
						|
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
 | 
						|
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
 | 
						|
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
 | 
						|
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
 | 
						|
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
 | 
						|
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
 | 
						|
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
 | 
						|
                    "elementwise_add_7": [1, 56, 40, 40],
 | 
						|
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
 | 
						|
                }
 | 
						|
                min_pact_shape = {
 | 
						|
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
 | 
						|
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
 | 
						|
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
 | 
						|
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
 | 
						|
                }
 | 
						|
                max_pact_shape = {
 | 
						|
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
 | 
						|
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
 | 
						|
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
 | 
						|
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
 | 
						|
                }
 | 
						|
                opt_pact_shape = {
 | 
						|
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
 | 
						|
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
 | 
						|
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
 | 
						|
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
 | 
						|
                }
 | 
						|
                min_input_shape.update(min_pact_shape)
 | 
						|
                max_input_shape.update(max_pact_shape)
 | 
						|
                opt_input_shape.update(opt_pact_shape)
 | 
						|
            elif mode == "rec":
 | 
						|
                min_input_shape = {"x": [1, 3, 32, 10]}
 | 
						|
                max_input_shape = {"x": [args.rec_batch_num, 3, 32, 1024]}
 | 
						|
                opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
 | 
						|
            elif mode == "cls":
 | 
						|
                min_input_shape = {"x": [1, 3, 48, 10]}
 | 
						|
                max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
 | 
						|
                opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
 | 
						|
            else:
 | 
						|
                min_input_shape = {"x": [1, 3, 10, 10]}
 | 
						|
                max_input_shape = {"x": [1, 3, 512, 512]}
 | 
						|
                opt_input_shape = {"x": [1, 3, 256, 256]}
 | 
						|
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
 | 
						|
                                              opt_input_shape)
 | 
						|
 | 
						|
        else:
 | 
						|
            config.disable_gpu()
 | 
						|
            if hasattr(args, "cpu_threads"):
 | 
						|
                config.set_cpu_math_library_num_threads(args.cpu_threads)
 | 
						|
            else:
 | 
						|
                # default cpu threads as 10
 | 
						|
                config.set_cpu_math_library_num_threads(10)
 | 
						|
            if args.enable_mkldnn:
 | 
						|
                # cache 10 different shapes for mkldnn to avoid memory leak
 | 
						|
                config.set_mkldnn_cache_capacity(10)
 | 
						|
                config.enable_mkldnn()
 | 
						|
                if args.precision == "fp16":
 | 
						|
                    config.enable_mkldnn_bfloat16()
 | 
						|
        # enable memory optim
 | 
						|
        config.enable_memory_optim()
 | 
						|
        config.disable_glog_info()
 | 
						|
 | 
						|
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
 | 
						|
        if mode == 'table':
 | 
						|
            config.delete_pass("fc_fuse_pass")  # not supported for table
 | 
						|
        config.switch_use_feed_fetch_ops(False)
 | 
						|
        config.switch_ir_optim(True)
 | 
						|
 | 
						|
        # create predictor
 | 
						|
        predictor = inference.create_predictor(config)
 | 
						|
        input_names = predictor.get_input_names()
 | 
						|
        for name in input_names:
 | 
						|
            input_tensor = predictor.get_input_handle(name)
 | 
						|
        output_names = predictor.get_output_names()
 | 
						|
        output_tensors = []
 | 
						|
        for output_name in output_names:
 | 
						|
            output_tensor = predictor.get_output_handle(output_name)
 | 
						|
            output_tensors.append(output_tensor)
 | 
						|
        return predictor, input_tensor, output_tensors, config
 | 
						|
 | 
						|
 | 
						|
def get_infer_gpuid():
 | 
						|
    cmd = "env | grep CUDA_VISIBLE_DEVICES"
 | 
						|
    env_cuda = os.popen(cmd).readlines()
 | 
						|
    if len(env_cuda) == 0:
 | 
						|
        return 0
 | 
						|
    else:
 | 
						|
        gpu_id = env_cuda[0].strip().split("=")[1]
 | 
						|
        return int(gpu_id[0])
 | 
						|
 | 
						|
 | 
						|
def draw_e2e_res(dt_boxes, strs, img_path):
 | 
						|
    src_im = cv2.imread(img_path)
 | 
						|
    for box, str in zip(dt_boxes, strs):
 | 
						|
        box = box.astype(np.int32).reshape((-1, 1, 2))
 | 
						|
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
 | 
						|
        cv2.putText(
 | 
						|
            src_im,
 | 
						|
            str,
 | 
						|
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
 | 
						|
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
 | 
						|
            fontScale=0.7,
 | 
						|
            color=(0, 255, 0),
 | 
						|
            thickness=1)
 | 
						|
    return src_im
 | 
						|
 | 
						|
 | 
						|
def draw_text_det_res(dt_boxes, img_path):
 | 
						|
    src_im = cv2.imread(img_path)
 | 
						|
    for box in dt_boxes:
 | 
						|
        box = np.array(box).astype(np.int32).reshape(-1, 2)
 | 
						|
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
 | 
						|
    return src_im
 | 
						|
 | 
						|
 | 
						|
def resize_img(img, input_size=600):
 | 
						|
    """
 | 
						|
    resize img and limit the longest side of the image to input_size
 | 
						|
    """
 | 
						|
    img = np.array(img)
 | 
						|
    im_shape = img.shape
 | 
						|
    im_size_max = np.max(im_shape[0:2])
 | 
						|
    im_scale = float(input_size) / float(im_size_max)
 | 
						|
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
 | 
						|
    return img
 | 
						|
 | 
						|
 | 
						|
def draw_ocr(image,
 | 
						|
             boxes,
 | 
						|
             txts=None,
 | 
						|
             scores=None,
 | 
						|
             drop_score=0.5,
 | 
						|
             font_path="./doc/fonts/simfang.ttf"):
 | 
						|
    """
 | 
						|
    Visualize the results of OCR detection and recognition
 | 
						|
    args:
 | 
						|
        image(Image|array): RGB image
 | 
						|
        boxes(list): boxes with shape(N, 4, 2)
 | 
						|
        txts(list): the texts
 | 
						|
        scores(list): txxs corresponding scores
 | 
						|
        drop_score(float): only scores greater than drop_threshold will be visualized
 | 
						|
        font_path: the path of font which is used to draw text
 | 
						|
    return(array):
 | 
						|
        the visualized img
 | 
						|
    """
 | 
						|
    if scores is None:
 | 
						|
        scores = [1] * len(boxes)
 | 
						|
    box_num = len(boxes)
 | 
						|
    for i in range(box_num):
 | 
						|
        if scores is not None and (scores[i] < drop_score or
 | 
						|
                                   math.isnan(scores[i])):
 | 
						|
            continue
 | 
						|
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
 | 
						|
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
 | 
						|
    if txts is not None:
 | 
						|
        img = np.array(resize_img(image, input_size=600))
 | 
						|
        txt_img = text_visual(
 | 
						|
            txts,
 | 
						|
            scores,
 | 
						|
            img_h=img.shape[0],
 | 
						|
            img_w=600,
 | 
						|
            threshold=drop_score,
 | 
						|
            font_path=font_path)
 | 
						|
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
 | 
						|
        return img
 | 
						|
    return image
 | 
						|
 | 
						|
 | 
						|
def draw_ocr_box_txt(image,
 | 
						|
                     boxes,
 | 
						|
                     txts,
 | 
						|
                     scores=None,
 | 
						|
                     drop_score=0.5,
 | 
						|
                     font_path="./doc/simfang.ttf"):
 | 
						|
    h, w = image.height, image.width
 | 
						|
    img_left = image.copy()
 | 
						|
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
 | 
						|
 | 
						|
    import random
 | 
						|
 | 
						|
    random.seed(0)
 | 
						|
    draw_left = ImageDraw.Draw(img_left)
 | 
						|
    draw_right = ImageDraw.Draw(img_right)
 | 
						|
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
 | 
						|
        if scores is not None and scores[idx] < drop_score:
 | 
						|
            continue
 | 
						|
        color = (random.randint(0, 255), random.randint(0, 255),
 | 
						|
                 random.randint(0, 255))
 | 
						|
        draw_left.polygon(box, fill=color)
 | 
						|
        draw_right.polygon(
 | 
						|
            [
 | 
						|
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
 | 
						|
                box[2][1], box[3][0], box[3][1]
 | 
						|
            ],
 | 
						|
            outline=color)
 | 
						|
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
 | 
						|
            1])**2)
 | 
						|
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
 | 
						|
            1])**2)
 | 
						|
        if box_height > 2 * box_width:
 | 
						|
            font_size = max(int(box_width * 0.9), 10)
 | 
						|
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
 | 
						|
            cur_y = box[0][1]
 | 
						|
            for c in txt:
 | 
						|
                char_size = font.getsize(c)
 | 
						|
                draw_right.text(
 | 
						|
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
 | 
						|
                cur_y += char_size[1]
 | 
						|
        else:
 | 
						|
            font_size = max(int(box_height * 0.8), 10)
 | 
						|
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
 | 
						|
            draw_right.text(
 | 
						|
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
 | 
						|
    img_left = Image.blend(image, img_left, 0.5)
 | 
						|
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
 | 
						|
    img_show.paste(img_left, (0, 0, w, h))
 | 
						|
    img_show.paste(img_right, (w, 0, w * 2, h))
 | 
						|
    return np.array(img_show)
 | 
						|
 | 
						|
 | 
						|
def str_count(s):
 | 
						|
    """
 | 
						|
    Count the number of Chinese characters,
 | 
						|
    a single English character and a single number
 | 
						|
    equal to half the length of Chinese characters.
 | 
						|
    args:
 | 
						|
        s(string): the input of string
 | 
						|
    return(int):
 | 
						|
        the number of Chinese characters
 | 
						|
    """
 | 
						|
    import string
 | 
						|
    count_zh = count_pu = 0
 | 
						|
    s_len = len(s)
 | 
						|
    en_dg_count = 0
 | 
						|
    for c in s:
 | 
						|
        if c in string.ascii_letters or c.isdigit() or c.isspace():
 | 
						|
            en_dg_count += 1
 | 
						|
        elif c.isalpha():
 | 
						|
            count_zh += 1
 | 
						|
        else:
 | 
						|
            count_pu += 1
 | 
						|
    return s_len - math.ceil(en_dg_count / 2)
 | 
						|
 | 
						|
 | 
						|
def text_visual(texts,
 | 
						|
                scores,
 | 
						|
                img_h=400,
 | 
						|
                img_w=600,
 | 
						|
                threshold=0.,
 | 
						|
                font_path="./doc/simfang.ttf"):
 | 
						|
    """
 | 
						|
    create new blank img and draw txt on it
 | 
						|
    args:
 | 
						|
        texts(list): the text will be draw
 | 
						|
        scores(list|None): corresponding score of each txt
 | 
						|
        img_h(int): the height of blank img
 | 
						|
        img_w(int): the width of blank img
 | 
						|
        font_path: the path of font which is used to draw text
 | 
						|
    return(array):
 | 
						|
    """
 | 
						|
    if scores is not None:
 | 
						|
        assert len(texts) == len(
 | 
						|
            scores), "The number of txts and corresponding scores must match"
 | 
						|
 | 
						|
    def create_blank_img():
 | 
						|
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
 | 
						|
        blank_img[:, img_w - 1:] = 0
 | 
						|
        blank_img = Image.fromarray(blank_img).convert("RGB")
 | 
						|
        draw_txt = ImageDraw.Draw(blank_img)
 | 
						|
        return blank_img, draw_txt
 | 
						|
 | 
						|
    blank_img, draw_txt = create_blank_img()
 | 
						|
 | 
						|
    font_size = 20
 | 
						|
    txt_color = (0, 0, 0)
 | 
						|
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
 | 
						|
 | 
						|
    gap = font_size + 5
 | 
						|
    txt_img_list = []
 | 
						|
    count, index = 1, 0
 | 
						|
    for idx, txt in enumerate(texts):
 | 
						|
        index += 1
 | 
						|
        if scores[idx] < threshold or math.isnan(scores[idx]):
 | 
						|
            index -= 1
 | 
						|
            continue
 | 
						|
        first_line = True
 | 
						|
        while str_count(txt) >= img_w // font_size - 4:
 | 
						|
            tmp = txt
 | 
						|
            txt = tmp[:img_w // font_size - 4]
 | 
						|
            if first_line:
 | 
						|
                new_txt = str(index) + ': ' + txt
 | 
						|
                first_line = False
 | 
						|
            else:
 | 
						|
                new_txt = '    ' + txt
 | 
						|
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
 | 
						|
            txt = tmp[img_w // font_size - 4:]
 | 
						|
            if count >= img_h // gap - 1:
 | 
						|
                txt_img_list.append(np.array(blank_img))
 | 
						|
                blank_img, draw_txt = create_blank_img()
 | 
						|
                count = 0
 | 
						|
            count += 1
 | 
						|
        if first_line:
 | 
						|
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
 | 
						|
        else:
 | 
						|
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
 | 
						|
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
 | 
						|
        # whether add new blank img or not
 | 
						|
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
 | 
						|
            txt_img_list.append(np.array(blank_img))
 | 
						|
            blank_img, draw_txt = create_blank_img()
 | 
						|
            count = 0
 | 
						|
        count += 1
 | 
						|
    txt_img_list.append(np.array(blank_img))
 | 
						|
    if len(txt_img_list) == 1:
 | 
						|
        blank_img = np.array(txt_img_list[0])
 | 
						|
    else:
 | 
						|
        blank_img = np.concatenate(txt_img_list, axis=1)
 | 
						|
    return np.array(blank_img)
 | 
						|
 | 
						|
 | 
						|
def base64_to_cv2(b64str):
 | 
						|
    import base64
 | 
						|
    data = base64.b64decode(b64str.encode('utf8'))
 | 
						|
    data = np.fromstring(data, np.uint8)
 | 
						|
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
 | 
						|
    return data
 | 
						|
 | 
						|
 | 
						|
def draw_boxes(image, boxes, scores=None, drop_score=0.5):
 | 
						|
    if scores is None:
 | 
						|
        scores = [1] * len(boxes)
 | 
						|
    for (box, score) in zip(boxes, scores):
 | 
						|
        if score < drop_score:
 | 
						|
            continue
 | 
						|
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
 | 
						|
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
 | 
						|
    return image
 | 
						|
 | 
						|
 | 
						|
def get_rotate_crop_image(img, points):
 | 
						|
    '''
 | 
						|
    img_height, img_width = img.shape[0:2]
 | 
						|
    left = int(np.min(points[:, 0]))
 | 
						|
    right = int(np.max(points[:, 0]))
 | 
						|
    top = int(np.min(points[:, 1]))
 | 
						|
    bottom = int(np.max(points[:, 1]))
 | 
						|
    img_crop = img[top:bottom, left:right, :].copy()
 | 
						|
    points[:, 0] = points[:, 0] - left
 | 
						|
    points[:, 1] = points[:, 1] - top
 | 
						|
    '''
 | 
						|
    assert len(points) == 4, "shape of points must be 4*2"
 | 
						|
    img_crop_width = int(
 | 
						|
        max(
 | 
						|
            np.linalg.norm(points[0] - points[1]),
 | 
						|
            np.linalg.norm(points[2] - points[3])))
 | 
						|
    img_crop_height = int(
 | 
						|
        max(
 | 
						|
            np.linalg.norm(points[0] - points[3]),
 | 
						|
            np.linalg.norm(points[1] - points[2])))
 | 
						|
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
 | 
						|
                          [img_crop_width, img_crop_height],
 | 
						|
                          [0, img_crop_height]])
 | 
						|
    M = cv2.getPerspectiveTransform(points, pts_std)
 | 
						|
    dst_img = cv2.warpPerspective(
 | 
						|
        img,
 | 
						|
        M, (img_crop_width, img_crop_height),
 | 
						|
        borderMode=cv2.BORDER_REPLICATE,
 | 
						|
        flags=cv2.INTER_CUBIC)
 | 
						|
    dst_img_height, dst_img_width = dst_img.shape[0:2]
 | 
						|
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
 | 
						|
        dst_img = np.rot90(dst_img)
 | 
						|
    return dst_img
 | 
						|
 | 
						|
 | 
						|
def check_gpu(use_gpu):
 | 
						|
    if use_gpu and not paddle.is_compiled_with_cuda():
 | 
						|
 | 
						|
        use_gpu = False
 | 
						|
    return use_gpu
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    pass
 |