mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 17:59:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			285 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			285 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| import paddle.nn.functional as F
 | |
| from paddle import ParamAttr
 | |
| 
 | |
| 
 | |
| class ConvBNLayer(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_channels,
 | |
|                  out_channels,
 | |
|                  kernel_size,
 | |
|                  stride,
 | |
|                  groups=1,
 | |
|                  if_act=True,
 | |
|                  act=None,
 | |
|                  name=None):
 | |
|         super(ConvBNLayer, self).__init__()
 | |
|         self.if_act = if_act
 | |
|         self.act = act
 | |
|         self.conv = nn.Conv2D(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=out_channels,
 | |
|             kernel_size=kernel_size,
 | |
|             stride=stride,
 | |
|             padding=(kernel_size - 1) // 2,
 | |
|             groups=groups,
 | |
|             weight_attr=ParamAttr(name=name + '_weights'),
 | |
|             bias_attr=False)
 | |
|   
 | |
|         self.bn = nn.BatchNorm(
 | |
|             num_channels=out_channels,
 | |
|             act=act,
 | |
|             param_attr=ParamAttr(name="bn_" + name + "_scale"),
 | |
|             bias_attr=ParamAttr(name="bn_" + name + "_offset"),
 | |
|             moving_mean_name="bn_" + name + "_mean",
 | |
|             moving_variance_name="bn_" + name + "_variance")
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.conv(x)
 | |
|         x = self.bn(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class DeConvBNLayer(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_channels,
 | |
|                  out_channels,
 | |
|                  kernel_size,
 | |
|                  stride,
 | |
|                  groups=1,
 | |
|                  if_act=True,
 | |
|                  act=None,
 | |
|                  name=None):
 | |
|         super(DeConvBNLayer, self).__init__()
 | |
|         self.if_act = if_act
 | |
|         self.act = act
 | |
|         self.deconv = nn.Conv2DTranspose(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=out_channels,
 | |
|             kernel_size=kernel_size,
 | |
|             stride=stride,
 | |
|             padding=(kernel_size - 1) // 2,
 | |
|             groups=groups,
 | |
|             weight_attr=ParamAttr(name=name + '_weights'),
 | |
|             bias_attr=False)
 | |
|         self.bn = nn.BatchNorm(
 | |
|             num_channels=out_channels,
 | |
|             act=act,
 | |
|             param_attr=ParamAttr(name="bn_" + name + "_scale"),
 | |
|             bias_attr=ParamAttr(name="bn_" + name + "_offset"),
 | |
|             moving_mean_name="bn_" + name + "_mean",
 | |
|             moving_variance_name="bn_" + name + "_variance")
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.deconv(x)
 | |
|         x = self.bn(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class FPN_Up_Fusion(nn.Layer):
 | |
|     def __init__(self, in_channels):
 | |
|         super(FPN_Up_Fusion, self).__init__()
 | |
|         in_channels = in_channels[::-1]
 | |
|         out_channels = [256, 256, 192, 192, 128]
 | |
|                 
 | |
|         self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 1, 1, act=None, name='fpn_up_h0')
 | |
|         self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 1, 1, act=None, name='fpn_up_h1')
 | |
|         self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 1, 1, act=None, name='fpn_up_h2')
 | |
|         self.h3_conv = ConvBNLayer(in_channels[3], out_channels[3], 1, 1, act=None, name='fpn_up_h3')
 | |
|         self.h4_conv = ConvBNLayer(in_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_h4')
 | |
| 
 | |
|         self.g0_conv = DeConvBNLayer(out_channels[0], out_channels[1], 4, 2, act=None, name='fpn_up_g0')
 | |
| 
 | |
|         self.g1_conv = nn.Sequential(
 | |
|             ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_up_g1_1'),
 | |
|             DeConvBNLayer(out_channels[1], out_channels[2], 4, 2, act=None, name='fpn_up_g1_2')
 | |
|         )
 | |
|         self.g2_conv = nn.Sequential(
 | |
|             ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_up_g2_1'),
 | |
|             DeConvBNLayer(out_channels[2], out_channels[3], 4, 2, act=None, name='fpn_up_g2_2')
 | |
|         )
 | |
|         self.g3_conv = nn.Sequential(
 | |
|             ConvBNLayer(out_channels[3], out_channels[3], 3, 1, act='relu', name='fpn_up_g3_1'),
 | |
|             DeConvBNLayer(out_channels[3], out_channels[4], 4, 2, act=None, name='fpn_up_g3_2')
 | |
|         )
 | |
| 
 | |
|         self.g4_conv = nn.Sequential(
 | |
|             ConvBNLayer(out_channels[4], out_channels[4], 3, 1, act='relu', name='fpn_up_fusion_1'),
 | |
|             ConvBNLayer(out_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_fusion_2')
 | |
|         )
 | |
| 
 | |
|     def _add_relu(self, x1, x2):
 | |
|         x = paddle.add(x=x1, y=x2)
 | |
|         x = F.relu(x)
 | |
|         return x
 | |
| 
 | |
|     def forward(self, x):
 | |
|         f = x[2:][::-1]
 | |
|         h0 = self.h0_conv(f[0])
 | |
|         h1 = self.h1_conv(f[1])
 | |
|         h2 = self.h2_conv(f[2])
 | |
|         h3 = self.h3_conv(f[3])
 | |
|         h4 = self.h4_conv(f[4])
 | |
| 
 | |
|         g0 = self.g0_conv(h0)
 | |
|         g1 = self._add_relu(g0, h1)
 | |
|         g1 = self.g1_conv(g1)
 | |
|         g2 = self.g2_conv(self._add_relu(g1, h2))
 | |
|         g3 = self.g3_conv(self._add_relu(g2, h3))
 | |
|         g4 = self.g4_conv(self._add_relu(g3, h4))
 | |
| 
 | |
|         return g4
 | |
| 
 | |
| 
 | |
| class FPN_Down_Fusion(nn.Layer):
 | |
|     def __init__(self, in_channels):
 | |
|         super(FPN_Down_Fusion, self).__init__()
 | |
|         out_channels = [32, 64, 128]
 | |
| 
 | |
|         self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 3, 1, act=None, name='fpn_down_h0')
 | |
|         self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 3, 1, act=None, name='fpn_down_h1')
 | |
|         self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 3, 1, act=None, name='fpn_down_h2')
 | |
| 
 | |
|         self.g0_conv = ConvBNLayer(out_channels[0], out_channels[1], 3, 2, act=None, name='fpn_down_g0')
 | |
| 
 | |
|         self.g1_conv = nn.Sequential(
 | |
|             ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_down_g1_1'),
 | |
|             ConvBNLayer(out_channels[1], out_channels[2], 3, 2, act=None, name='fpn_down_g1_2')            
 | |
|         )
 | |
| 
 | |
|         self.g2_conv = nn.Sequential(
 | |
|             ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_down_fusion_1'),
 | |
|             ConvBNLayer(out_channels[2], out_channels[2], 1, 1, act=None, name='fpn_down_fusion_2')            
 | |
|         )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         f = x[:3]
 | |
|         h0 = self.h0_conv(f[0])
 | |
|         h1 = self.h1_conv(f[1])
 | |
|         h2 = self.h2_conv(f[2])
 | |
|         g0 = self.g0_conv(h0)
 | |
|         g1 = paddle.add(x=g0, y=h1)
 | |
|         g1 = F.relu(g1)
 | |
|         g1 = self.g1_conv(g1)
 | |
|         g2 = paddle.add(x=g1, y=h2)
 | |
|         g2 = F.relu(g2)
 | |
|         g2 = self.g2_conv(g2)
 | |
|         return g2
 | |
| 
 | |
| 
 | |
| class Cross_Attention(nn.Layer):
 | |
|     def __init__(self, in_channels):
 | |
|         super(Cross_Attention, self).__init__()
 | |
|         self.theta_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_theta')
 | |
|         self.phi_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_phi')
 | |
|         self.g_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_g')
 | |
| 
 | |
|         self.fh_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_weight')
 | |
|         self.fh_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_sc')
 | |
| 
 | |
|         self.fv_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_weight')
 | |
|         self.fv_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_sc')
 | |
| 
 | |
|         self.f_attn_conv = ConvBNLayer(in_channels * 2, in_channels, 1, 1, act='relu', name='f_attn')
 | |
| 
 | |
|     def _cal_fweight(self, f, shape):
 | |
|         f_theta, f_phi, f_g = f
 | |
|         #flatten
 | |
|         f_theta = paddle.transpose(f_theta, [0, 2, 3, 1])
 | |
|         f_theta = paddle.reshape(f_theta, [shape[0] * shape[1], shape[2], 128])
 | |
|         f_phi = paddle.transpose(f_phi, [0, 2, 3, 1])
 | |
|         f_phi = paddle.reshape(f_phi, [shape[0] * shape[1], shape[2], 128])
 | |
|         f_g = paddle.transpose(f_g, [0, 2, 3, 1])
 | |
|         f_g = paddle.reshape(f_g, [shape[0] * shape[1], shape[2], 128])
 | |
|         #correlation
 | |
|         f_attn = paddle.matmul(f_theta, paddle.transpose(f_phi, [0, 2, 1]))
 | |
|         #scale
 | |
|         f_attn = f_attn / (128**0.5)
 | |
|         f_attn = F.softmax(f_attn)
 | |
|         #weighted sum
 | |
|         f_weight = paddle.matmul(f_attn, f_g)
 | |
|         f_weight = paddle.reshape(
 | |
|             f_weight, [shape[0], shape[1], shape[2], 128])
 | |
|         return f_weight
 | |
| 
 | |
|     def forward(self, f_common):
 | |
|         f_shape = paddle.shape(f_common)
 | |
|         # print('f_shape: ', f_shape)
 | |
| 
 | |
|         f_theta = self.theta_conv(f_common)
 | |
|         f_phi = self.phi_conv(f_common)
 | |
|         f_g = self.g_conv(f_common)
 | |
| 
 | |
|         ######## horizon ########
 | |
|         fh_weight = self._cal_fweight([f_theta, f_phi, f_g], 
 | |
|                                         [f_shape[0], f_shape[2], f_shape[3]])
 | |
|         fh_weight = paddle.transpose(fh_weight, [0, 3, 1, 2])
 | |
|         fh_weight = self.fh_weight_conv(fh_weight)
 | |
|         #short cut
 | |
|         fh_sc = self.fh_sc_conv(f_common)
 | |
|         f_h = F.relu(fh_weight + fh_sc)
 | |
| 
 | |
|         ######## vertical ########
 | |
|         fv_theta = paddle.transpose(f_theta, [0, 1, 3, 2])
 | |
|         fv_phi = paddle.transpose(f_phi, [0, 1, 3, 2])
 | |
|         fv_g = paddle.transpose(f_g, [0, 1, 3, 2])
 | |
|         fv_weight = self._cal_fweight([fv_theta, fv_phi, fv_g], 
 | |
|                                         [f_shape[0], f_shape[3], f_shape[2]])
 | |
|         fv_weight = paddle.transpose(fv_weight, [0, 3, 2, 1])
 | |
|         fv_weight = self.fv_weight_conv(fv_weight)
 | |
|         #short cut
 | |
|         fv_sc = self.fv_sc_conv(f_common)
 | |
|         f_v = F.relu(fv_weight + fv_sc)
 | |
| 
 | |
|         ######## merge ########
 | |
|         f_attn = paddle.concat([f_h, f_v], axis=1)
 | |
|         f_attn = self.f_attn_conv(f_attn)
 | |
|         return f_attn
 | |
| 
 | |
| 
 | |
| class SASTFPN(nn.Layer):
 | |
|     def __init__(self, in_channels, with_cab=False, **kwargs):
 | |
|         super(SASTFPN, self).__init__()
 | |
|         self.in_channels = in_channels
 | |
|         self.with_cab = with_cab
 | |
|         self.FPN_Down_Fusion = FPN_Down_Fusion(self.in_channels)
 | |
|         self.FPN_Up_Fusion = FPN_Up_Fusion(self.in_channels)
 | |
|         self.out_channels = 128
 | |
|         self.cross_attention = Cross_Attention(self.out_channels)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         #down fpn
 | |
|         f_down = self.FPN_Down_Fusion(x)
 | |
| 
 | |
|         #up fpn
 | |
|         f_up = self.FPN_Up_Fusion(x)
 | |
| 
 | |
|         #fusion
 | |
|         f_common = paddle.add(x=f_down, y=f_up)
 | |
|         f_common = F.relu(f_common)
 | |
| 
 | |
|         if self.with_cab:
 | |
|             # print('enhence f_common with CAB.')
 | |
|             f_common = self.cross_attention(f_common)
 | |
| 
 | |
|         return f_common
 | 
