mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			71 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import os
 | |
| import sys
 | |
| 
 | |
| __dir__ = os.path.dirname(os.path.abspath(__file__))
 | |
| sys.path.append(__dir__)
 | |
| sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
 | |
| 
 | |
| from ppocr.data import build_dataloader
 | |
| from ppocr.modeling.architectures import build_model
 | |
| from ppocr.postprocess import build_post_process
 | |
| from ppocr.metrics import build_metric
 | |
| from ppocr.utils.save_load import init_model
 | |
| from ppocr.utils.utility import print_dict
 | |
| import tools.program as program
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     global_config = config['Global']
 | |
|     # build dataloader
 | |
|     valid_dataloader = build_dataloader(config, 'Eval', device, logger)
 | |
| 
 | |
|     # build post process
 | |
|     post_process_class = build_post_process(config['PostProcess'],
 | |
|                                             global_config)
 | |
| 
 | |
|     # build model
 | |
|     # for rec algorithm
 | |
|     if hasattr(post_process_class, 'character'):
 | |
|         config['Architecture']["Head"]['out_channels'] = len(
 | |
|             getattr(post_process_class, 'character'))
 | |
|     model = build_model(config['Architecture'])
 | |
| 
 | |
|     best_model_dict = init_model(config, model, logger)
 | |
|     if len(best_model_dict):
 | |
|         logger.info('metric in ckpt ***************')
 | |
|         for k, v in best_model_dict.items():
 | |
|             logger.info('{}:{}'.format(k, v))
 | |
| 
 | |
|     # build metric
 | |
|     eval_class = build_metric(config['Metric'])
 | |
| 
 | |
|     # start eval
 | |
|     metirc = program.eval(model, valid_dataloader, post_process_class,
 | |
|                           eval_class)
 | |
|     logger.info('metric eval ***************')
 | |
|     for k, v in metirc.items():
 | |
|         logger.info('{}:{}'.format(k, v))
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     config, device, logger, vdl_writer = program.preprocess()
 | |
|     main()
 | 
