mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-30 17:29:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			88 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| import os
 | |
| import sys
 | |
| 
 | |
| __dir__ = os.path.dirname(os.path.abspath(__file__))
 | |
| sys.path.append(__dir__)
 | |
| sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
 | |
| 
 | |
| import paddle
 | |
| 
 | |
| from ppocr.data import create_operators, transform
 | |
| from ppocr.modeling.architectures import build_model
 | |
| from ppocr.postprocess import build_post_process
 | |
| from ppocr.utils.save_load import init_model
 | |
| from ppocr.utils.utility import get_image_file_list
 | |
| import tools.program as program
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     global_config = config['Global']
 | |
| 
 | |
|     # build post process
 | |
|     post_process_class = build_post_process(config['PostProcess'],
 | |
|                                             global_config)
 | |
| 
 | |
|     # build model
 | |
|     if hasattr(post_process_class, 'character'):
 | |
|         config['Architecture']["Head"]['out_channels'] = len(
 | |
|             getattr(post_process_class, 'character'))
 | |
| 
 | |
|     model = build_model(config['Architecture'])
 | |
| 
 | |
|     init_model(config, model, logger)
 | |
| 
 | |
|     # create data ops
 | |
|     transforms = []
 | |
|     for op in config['Eval']['dataset']['transforms']:
 | |
|         op_name = list(op)[0]
 | |
|         if 'Label' in op_name:
 | |
|             continue
 | |
|         elif op_name in ['RecResizeImg']:
 | |
|             op[op_name]['infer_mode'] = True
 | |
|         elif op_name == 'KeepKeys':
 | |
|             op[op_name]['keep_keys'] = ['image']
 | |
|         transforms.append(op)
 | |
|     global_config['infer_mode'] = True
 | |
|     ops = create_operators(transforms, global_config)
 | |
| 
 | |
|     model.eval()
 | |
|     for file in get_image_file_list(config['Global']['infer_img']):
 | |
|         logger.info("infer_img: {}".format(file))
 | |
|         with open(file, 'rb') as f:
 | |
|             img = f.read()
 | |
|             data = {'image': img}
 | |
|         batch = transform(data, ops)
 | |
| 
 | |
|         images = np.expand_dims(batch[0], axis=0)
 | |
|         images = paddle.to_tensor(images)
 | |
|         preds = model(images)
 | |
|         post_result = post_process_class(preds)
 | |
|         for rec_reuslt in post_result:
 | |
|             logger.info('\t result: {}'.format(rec_reuslt))
 | |
|     logger.info("success!")
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     config, device, logger, vdl_writer = program.preprocess()
 | |
|     main()
 | 
