mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			64 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # PaddleServing预测功能测试
 | ||
| 
 | ||
| PaddleServing预测功能测试的主程序为`test_serving_infer_python.sh`和`test_serving_infer_cpp.sh`,可以测试基于PaddleServing的部署功能。
 | ||
| 
 | ||
| ## 1. 测试结论汇总
 | ||
| 
 | ||
| 基于训练是否使用量化,进行本测试的模型可以分为`正常模型`和`量化模型`,这两类模型对应的Serving预测功能汇总如下:
 | ||
| 
 | ||
| | 模型类型 |device | batchsize | tensorrt | mkldnn | cpu多线程 |
 | ||
| |  ----   |  ---- |   ----   |  :----:  |   :----:   |  :----:  |
 | ||
| | 正常模型 | GPU | 1/6 | fp32/fp16 | - | - |
 | ||
| | 正常模型 | CPU | 1/6 | - | fp32 | 支持 |
 | ||
| | 量化模型 | GPU | 1/6 | int8 | - | - |
 | ||
| | 量化模型 | CPU | 1/6 | - | int8 | 支持 |
 | ||
| 
 | ||
| ## 2. 测试流程
 | ||
| 运行环境配置请参考[文档](./install.md)的内容配置TIPC的运行环境。
 | ||
| 
 | ||
| ### 2.1 功能测试
 | ||
| **python serving**
 | ||
| 先运行`prepare.sh`准备数据和模型,然后运行`test_serving_infer_python.sh`进行测试,最终在```test_tipc/output/{model_name}/serving_infer/python```目录下生成`python_*.log`后缀的日志文件。
 | ||
| 
 | ||
| ```shell
 | ||
| bash test_tipc/prepare.sh ./test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt "serving_infer"
 | ||
| 
 | ||
| # 用法:
 | ||
| bash test_tipc/test_serving_infer_python.sh ./test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt "serving_infer"
 | ||
| ```  
 | ||
| **cpp serving**
 | ||
| 先运行`prepare.sh`准备数据和模型,然后运行`test_serving_infer_cpp.sh`进行测试,最终在```test_tipc/output/{model_name}/serving_infer/cpp```目录下生成`cpp_*.log`后缀的日志文件。
 | ||
| 
 | ||
| ```shell
 | ||
| bash test_tipc/prepare.sh ./test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_serving_cpp_linux_gpu_cpu.txt "serving_infer"
 | ||
| 
 | ||
| # 用法:
 | ||
| bash test_tipc/test_serving_infer_cpp.sh ./test_tipc/configs/ch_PP-OCRv2/model_linux_gpu_normal_normal_serving_cpp_linux_gpu_cpu.txt "serving_infer"
 | ||
| ```  
 | ||
| 
 | ||
| #### 运行结果
 | ||
| 
 | ||
| 各测试的运行情况会打印在 `test_tipc/output/{model_name}/serving_infer/python(cpp)/results_python(cpp)_serving.log` 中:
 | ||
| 运行成功时会输出:
 | ||
| 
 | ||
| ```
 | ||
| Run successfully with command - ch_PP-OCRv2_rec - nohup python3.7 web_service_rec.py --config=config.yml --opt op.rec.concurrency="1" op.det.local_service_conf.devices= op.det.local_service_conf.use_mkldnn=False op.det.local_service_conf.thread_num=6 op.rec.local_service_conf.model_config=ppocr_rec_v2_serving > ./test_tipc/output/ch_PP-OCRv2_rec/serving_infer/python/python_server_cpu_usemkldnn_False_threads_6.log 2>&1 &!
 | ||
| Run successfully with command - ch_PP-OCRv2_rec - python3.7 pipeline_http_client.py --det=False --image_dir=../../inference/rec_inference > ./test_tipc/output/ch_PP-OCRv2_rec/serving_infer/python/python_client_cpu_pipeline_http_usemkldnn_False_threads_6_batchsize_1.log 2>&1 !
 | ||
| ...
 | ||
| ```
 | ||
| 
 | ||
| 运行失败时会输出:
 | ||
| 
 | ||
| ```
 | ||
| Run failed with command - ch_PP-OCRv2_rec - nohup python3.7 web_service_rec.py --config=config.yml --opt op.rec.concurrency="1" op.det.local_service_conf.devices= op.det.local_service_conf.use_mkldnn=False op.det.local_service_conf.thread_num=6 op.rec.local_service_conf.model_config=ppocr_rec_v2_serving > ./test_tipc/output/ch_PP-OCRv2_rec/serving_infer/python/python_server_cpu_usemkldnn_False_threads_6.log 2>&1 &!
 | ||
| Run failed with command - ch_PP-OCRv2_rec - python3.7 pipeline_http_client.py --det=False --image_dir=../../inference/rec_inference > ./test_tipc/output/ch_PP-OCRv2_rec/serving_infer/python/python_client_cpu_pipeline_http_usemkldnn_False_threads_6_batchsize_1.log 2>&1 !
 | ||
| ...
 | ||
| ```
 | ||
| 
 | ||
| 详细的预测结果会存在 test_tipc/output/{model_name}/serving_infer/python(cpp)/ 文件夹下
 | ||
| 
 | ||
| 
 | ||
| ## 3. 更多教程
 | ||
| 
 | ||
| 本文档为功能测试用,更详细的Serving预测使用教程请参考:[PPOCR 服务化部署](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/deploy/pdserving/README_CN.md)  
 | 
