mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			211 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			211 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
"""
 | 
						|
This code is refer from: 
 | 
						|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
 | 
						|
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
 | 
						|
"""
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import paddle
 | 
						|
from paddle import ParamAttr
 | 
						|
import paddle.nn as nn
 | 
						|
import paddle.nn.functional as F
 | 
						|
import numpy as np
 | 
						|
 | 
						|
__all__ = ["ResNet31"]
 | 
						|
 | 
						|
 | 
						|
def conv3x3(in_channel, out_channel, stride=1):
 | 
						|
    return nn.Conv2D(
 | 
						|
        in_channel,
 | 
						|
        out_channel,
 | 
						|
        kernel_size=3,
 | 
						|
        stride=stride,
 | 
						|
        padding=1,
 | 
						|
        bias_attr=False)
 | 
						|
 | 
						|
 | 
						|
class BasicBlock(nn.Layer):
 | 
						|
    expansion = 1
 | 
						|
 | 
						|
    def __init__(self, in_channels, channels, stride=1, downsample=False):
 | 
						|
        super().__init__()
 | 
						|
        self.conv1 = conv3x3(in_channels, channels, stride)
 | 
						|
        self.bn1 = nn.BatchNorm2D(channels)
 | 
						|
        self.relu = nn.ReLU()
 | 
						|
        self.conv2 = conv3x3(channels, channels)
 | 
						|
        self.bn2 = nn.BatchNorm2D(channels)
 | 
						|
        self.downsample = downsample
 | 
						|
        if downsample:
 | 
						|
            self.downsample = nn.Sequential(
 | 
						|
                nn.Conv2D(
 | 
						|
                    in_channels,
 | 
						|
                    channels * self.expansion,
 | 
						|
                    1,
 | 
						|
                    stride,
 | 
						|
                    bias_attr=False),
 | 
						|
                nn.BatchNorm2D(channels * self.expansion), )
 | 
						|
        else:
 | 
						|
            self.downsample = nn.Sequential()
 | 
						|
        self.stride = stride
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        residual = x
 | 
						|
 | 
						|
        out = self.conv1(x)
 | 
						|
        out = self.bn1(out)
 | 
						|
        out = self.relu(out)
 | 
						|
 | 
						|
        out = self.conv2(out)
 | 
						|
        out = self.bn2(out)
 | 
						|
 | 
						|
        if self.downsample:
 | 
						|
            residual = self.downsample(x)
 | 
						|
 | 
						|
        out += residual
 | 
						|
        out = self.relu(out)
 | 
						|
 | 
						|
        return out
 | 
						|
 | 
						|
 | 
						|
class ResNet31(nn.Layer):
 | 
						|
    '''
 | 
						|
    Args:
 | 
						|
        in_channels (int): Number of channels of input image tensor.
 | 
						|
        layers (list[int]): List of BasicBlock number for each stage.
 | 
						|
        channels (list[int]): List of out_channels of Conv2d layer.
 | 
						|
        out_indices (None | Sequence[int]): Indices of output stages.
 | 
						|
        last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
 | 
						|
    '''
 | 
						|
 | 
						|
    def __init__(self,
 | 
						|
                 in_channels=3,
 | 
						|
                 layers=[1, 2, 5, 3],
 | 
						|
                 channels=[64, 128, 256, 256, 512, 512, 512],
 | 
						|
                 out_indices=None,
 | 
						|
                 last_stage_pool=False):
 | 
						|
        super(ResNet31, self).__init__()
 | 
						|
        assert isinstance(in_channels, int)
 | 
						|
        assert isinstance(last_stage_pool, bool)
 | 
						|
 | 
						|
        self.out_indices = out_indices
 | 
						|
        self.last_stage_pool = last_stage_pool
 | 
						|
 | 
						|
        # conv 1 (Conv Conv)
 | 
						|
        self.conv1_1 = nn.Conv2D(
 | 
						|
            in_channels, channels[0], kernel_size=3, stride=1, padding=1)
 | 
						|
        self.bn1_1 = nn.BatchNorm2D(channels[0])
 | 
						|
        self.relu1_1 = nn.ReLU()
 | 
						|
 | 
						|
        self.conv1_2 = nn.Conv2D(
 | 
						|
            channels[0], channels[1], kernel_size=3, stride=1, padding=1)
 | 
						|
        self.bn1_2 = nn.BatchNorm2D(channels[1])
 | 
						|
        self.relu1_2 = nn.ReLU()
 | 
						|
 | 
						|
        # conv 2 (Max-pooling, Residual block, Conv)
 | 
						|
        self.pool2 = nn.MaxPool2D(
 | 
						|
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
 | 
						|
        self.block2 = self._make_layer(channels[1], channels[2], layers[0])
 | 
						|
        self.conv2 = nn.Conv2D(
 | 
						|
            channels[2], channels[2], kernel_size=3, stride=1, padding=1)
 | 
						|
        self.bn2 = nn.BatchNorm2D(channels[2])
 | 
						|
        self.relu2 = nn.ReLU()
 | 
						|
 | 
						|
        # conv 3 (Max-pooling, Residual block, Conv)
 | 
						|
        self.pool3 = nn.MaxPool2D(
 | 
						|
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
 | 
						|
        self.block3 = self._make_layer(channels[2], channels[3], layers[1])
 | 
						|
        self.conv3 = nn.Conv2D(
 | 
						|
            channels[3], channels[3], kernel_size=3, stride=1, padding=1)
 | 
						|
        self.bn3 = nn.BatchNorm2D(channels[3])
 | 
						|
        self.relu3 = nn.ReLU()
 | 
						|
 | 
						|
        # conv 4 (Max-pooling, Residual block, Conv)
 | 
						|
        self.pool4 = nn.MaxPool2D(
 | 
						|
            kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
 | 
						|
        self.block4 = self._make_layer(channels[3], channels[4], layers[2])
 | 
						|
        self.conv4 = nn.Conv2D(
 | 
						|
            channels[4], channels[4], kernel_size=3, stride=1, padding=1)
 | 
						|
        self.bn4 = nn.BatchNorm2D(channels[4])
 | 
						|
        self.relu4 = nn.ReLU()
 | 
						|
 | 
						|
        # conv 5 ((Max-pooling), Residual block, Conv)
 | 
						|
        self.pool5 = None
 | 
						|
        if self.last_stage_pool:
 | 
						|
            self.pool5 = nn.MaxPool2D(
 | 
						|
                kernel_size=2, stride=2, padding=0, ceil_mode=True)
 | 
						|
        self.block5 = self._make_layer(channels[4], channels[5], layers[3])
 | 
						|
        self.conv5 = nn.Conv2D(
 | 
						|
            channels[5], channels[5], kernel_size=3, stride=1, padding=1)
 | 
						|
        self.bn5 = nn.BatchNorm2D(channels[5])
 | 
						|
        self.relu5 = nn.ReLU()
 | 
						|
 | 
						|
        self.out_channels = channels[-1]
 | 
						|
 | 
						|
    def _make_layer(self, input_channels, output_channels, blocks):
 | 
						|
        layers = []
 | 
						|
        for _ in range(blocks):
 | 
						|
            downsample = None
 | 
						|
            if input_channels != output_channels:
 | 
						|
                downsample = nn.Sequential(
 | 
						|
                    nn.Conv2D(
 | 
						|
                        input_channels,
 | 
						|
                        output_channels,
 | 
						|
                        kernel_size=1,
 | 
						|
                        stride=1,
 | 
						|
                        bias_attr=False),
 | 
						|
                    nn.BatchNorm2D(output_channels), )
 | 
						|
 | 
						|
            layers.append(
 | 
						|
                BasicBlock(
 | 
						|
                    input_channels, output_channels, downsample=downsample))
 | 
						|
            input_channels = output_channels
 | 
						|
        return nn.Sequential(*layers)
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x = self.conv1_1(x)
 | 
						|
        x = self.bn1_1(x)
 | 
						|
        x = self.relu1_1(x)
 | 
						|
 | 
						|
        x = self.conv1_2(x)
 | 
						|
        x = self.bn1_2(x)
 | 
						|
        x = self.relu1_2(x)
 | 
						|
 | 
						|
        outs = []
 | 
						|
        for i in range(4):
 | 
						|
            layer_index = i + 2
 | 
						|
            pool_layer = getattr(self, f'pool{layer_index}')
 | 
						|
            block_layer = getattr(self, f'block{layer_index}')
 | 
						|
            conv_layer = getattr(self, f'conv{layer_index}')
 | 
						|
            bn_layer = getattr(self, f'bn{layer_index}')
 | 
						|
            relu_layer = getattr(self, f'relu{layer_index}')
 | 
						|
 | 
						|
            if pool_layer is not None:
 | 
						|
                x = pool_layer(x)
 | 
						|
            x = block_layer(x)
 | 
						|
            x = conv_layer(x)
 | 
						|
            x = bn_layer(x)
 | 
						|
            x = relu_layer(x)
 | 
						|
 | 
						|
            outs.append(x)
 | 
						|
 | 
						|
        if self.out_indices is not None:
 | 
						|
            return tuple([outs[i] for i in self.out_indices])
 | 
						|
 | 
						|
        return x
 |