mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-30 17:29:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			139 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| This code is refer from:
 | |
| https://github.com/whai362/PSENet/blob/python3/models/neck/fpn.py
 | |
| """
 | |
| 
 | |
| import paddle.nn as nn
 | |
| import paddle
 | |
| import math
 | |
| import paddle.nn.functional as F
 | |
| 
 | |
| 
 | |
| class Conv_BN_ReLU(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_planes,
 | |
|                  out_planes,
 | |
|                  kernel_size=1,
 | |
|                  stride=1,
 | |
|                  padding=0):
 | |
|         super(Conv_BN_ReLU, self).__init__()
 | |
|         self.conv = nn.Conv2D(
 | |
|             in_planes,
 | |
|             out_planes,
 | |
|             kernel_size=kernel_size,
 | |
|             stride=stride,
 | |
|             padding=padding,
 | |
|             bias_attr=False)
 | |
|         self.bn = nn.BatchNorm2D(out_planes, momentum=0.1)
 | |
|         self.relu = nn.ReLU()
 | |
| 
 | |
|         for m in self.sublayers():
 | |
|             if isinstance(m, nn.Conv2D):
 | |
|                 n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
 | |
|                 m.weight = paddle.create_parameter(
 | |
|                     shape=m.weight.shape,
 | |
|                     dtype='float32',
 | |
|                     default_initializer=paddle.nn.initializer.Normal(
 | |
|                         0, math.sqrt(2. / n)))
 | |
|             elif isinstance(m, nn.BatchNorm2D):
 | |
|                 m.weight = paddle.create_parameter(
 | |
|                     shape=m.weight.shape,
 | |
|                     dtype='float32',
 | |
|                     default_initializer=paddle.nn.initializer.Constant(1.0))
 | |
|                 m.bias = paddle.create_parameter(
 | |
|                     shape=m.bias.shape,
 | |
|                     dtype='float32',
 | |
|                     default_initializer=paddle.nn.initializer.Constant(0.0))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return self.relu(self.bn(self.conv(x)))
 | |
| 
 | |
| 
 | |
| class FPN(nn.Layer):
 | |
|     def __init__(self, in_channels, out_channels):
 | |
|         super(FPN, self).__init__()
 | |
| 
 | |
|         # Top layer
 | |
|         self.toplayer_ = Conv_BN_ReLU(
 | |
|             in_channels[3], out_channels, kernel_size=1, stride=1, padding=0)
 | |
|         # Lateral layers
 | |
|         self.latlayer1_ = Conv_BN_ReLU(
 | |
|             in_channels[2], out_channels, kernel_size=1, stride=1, padding=0)
 | |
| 
 | |
|         self.latlayer2_ = Conv_BN_ReLU(
 | |
|             in_channels[1], out_channels, kernel_size=1, stride=1, padding=0)
 | |
| 
 | |
|         self.latlayer3_ = Conv_BN_ReLU(
 | |
|             in_channels[0], out_channels, kernel_size=1, stride=1, padding=0)
 | |
| 
 | |
|         # Smooth layers
 | |
|         self.smooth1_ = Conv_BN_ReLU(
 | |
|             out_channels, out_channels, kernel_size=3, stride=1, padding=1)
 | |
| 
 | |
|         self.smooth2_ = Conv_BN_ReLU(
 | |
|             out_channels, out_channels, kernel_size=3, stride=1, padding=1)
 | |
| 
 | |
|         self.smooth3_ = Conv_BN_ReLU(
 | |
|             out_channels, out_channels, kernel_size=3, stride=1, padding=1)
 | |
| 
 | |
|         self.out_channels = out_channels * 4
 | |
|         for m in self.sublayers():
 | |
|             if isinstance(m, nn.Conv2D):
 | |
|                 n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
 | |
|                 m.weight = paddle.create_parameter(
 | |
|                     shape=m.weight.shape,
 | |
|                     dtype='float32',
 | |
|                     default_initializer=paddle.nn.initializer.Normal(
 | |
|                         0, math.sqrt(2. / n)))
 | |
|             elif isinstance(m, nn.BatchNorm2D):
 | |
|                 m.weight = paddle.create_parameter(
 | |
|                     shape=m.weight.shape,
 | |
|                     dtype='float32',
 | |
|                     default_initializer=paddle.nn.initializer.Constant(1.0))
 | |
|                 m.bias = paddle.create_parameter(
 | |
|                     shape=m.bias.shape,
 | |
|                     dtype='float32',
 | |
|                     default_initializer=paddle.nn.initializer.Constant(0.0))
 | |
| 
 | |
|     def _upsample(self, x, scale=1):
 | |
|         return F.upsample(x, scale_factor=scale, mode='bilinear')
 | |
| 
 | |
|     def _upsample_add(self, x, y, scale=1):
 | |
|         return F.upsample(x, scale_factor=scale, mode='bilinear') + y
 | |
| 
 | |
|     def forward(self, x):
 | |
|         f2, f3, f4, f5 = x
 | |
|         p5 = self.toplayer_(f5)
 | |
| 
 | |
|         f4 = self.latlayer1_(f4)
 | |
|         p4 = self._upsample_add(p5, f4, 2)
 | |
|         p4 = self.smooth1_(p4)
 | |
| 
 | |
|         f3 = self.latlayer2_(f3)
 | |
|         p3 = self._upsample_add(p4, f3, 2)
 | |
|         p3 = self.smooth2_(p3)
 | |
| 
 | |
|         f2 = self.latlayer3_(f2)
 | |
|         p2 = self._upsample_add(p3, f2, 2)
 | |
|         p2 = self.smooth3_(p2)
 | |
| 
 | |
|         p3 = self._upsample(p3, 2)
 | |
|         p4 = self._upsample(p4, 4)
 | |
|         p5 = self._upsample(p5, 8)
 | |
| 
 | |
|         fuse = paddle.concat([p2, p3, p4, p5], axis=1)
 | |
|         return fuse
 | 
