PaddleOCR/docs/version3.x/algorithm/PP-OCRv5/PP-OCRv5_multi_languages.en.md
2025-08-20 19:32:22 +08:00

11 KiB
Raw Blame History

comments
true

1. Introduction to PP-OCRv5 Multilingual Text Recognition

PP-OCRv5 is the latest generation text recognition solution in the PP-OCR series, focusing on multi-scenario and multilingual text recognition tasks. In terms of supported text types, the default configuration of the recognition model can accurately identify five major types: Simplified Chinese, Pinyin, Traditional Chinese, English, and Japanese. Additionally, PP-OCRv5 offers multilingual text recognition capabilities covering 39 languages, including Korean, Spanish, French, Portuguese, German, Italian, Russian, Thai, Greek and more (for a full list of supported languages and abbreviations, see Section 4). Compared to the previous PP-OCRv3 version, PP-OCRv5 achieves over a 30% improvement in accuracy for multilingual text recognition.

French recognition result
French Recognition Result

German recognition result
German Recognition Result

Korean recognition result
Korean Recognition Result

Russian recognition result
Russian Recognition Result
Thai recognition result
Thai recognition result
Greek recognition result
Greek recognition result

2. Quick Start

You can specify the language for text recognition by using the --lang parameter when running the general OCR pipeline in the command line:

# Use the `--lang` parameter to specify the French recognition model
paddleocr ocr -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_french01.png \
    --lang fr \
    --use_doc_orientation_classify False \
    --use_doc_unwarping False \
    --use_textline_orientation False \
    --save_path ./output \
    --device gpu:0 

For explanations of the other command-line parameters, please refer to the Command Line Usage section of the general OCR pipeline documentation. After running, the results will be displayed in the terminal:

{'res': {'input_path': '/root/.paddlex/predict_input/general_ocr_french01.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': False}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[119,  23],
        ...,
        [118,  75]],

       ...,

       [[109, 506],
        ...,
        [108, 556]]], dtype=int16), 'text_det_params': {'limit_side_len': 64, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['mifere; la profpérité & les fuccès ac-', 'compagnent lhomme induftrieux.', 'Quel eft celui qui a acquis des ri-', 'cheffes, qui eft devenu puiffant, qui', 'seft couvert de gloire, dont léloge', 'retentit par-tout, qui fiege au confeil', "du Roi? C'eft celui qui bannit la pa-", "reffe de fa maifon, & qui a dit à l'oifi-", 'veté : tu es mon ennemie.'], 'rec_scores': array([0.98409832, ..., 0.98091048]), 'rec_polys': array([[[119,  23],
        ...,
        [118,  75]],

       ...,

       [[109, 506],
        ...,
        [108, 556]]], dtype=int16), 'rec_boxes': array([[118, ...,  81],
       ...,
       [108, ..., 562]], dtype=int16)}}

If you specify save_path, the visualization results will be saved to the specified path. An example of the visualized result is shown below:

You can also use Python code to specify the recognition model for a particular language when initializing the general OCR pipeline via the lang parameter:

from paddleocr import PaddleOCR

ocr = PaddleOCR(
    lang="fr", # Specify French recognition model with the lang parameter
    use_doc_orientation_classify=False, # Disable document orientation classification model
    use_doc_unwarping=False, # Disable text image unwarping model
    use_textline_orientation=False, # Disable text line orientation classification model
)
result = ocr.predict("https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_french01.png")
for res in result:
    res.print()
    res.save_to_img("output")
    res.save_to_json("output")

For more details on the PaddleOCR class parameters, please refer to the Python Scripting Integration section of the general OCR pipeline documentation.

3. Performance Comparison

Model Download Link Accuracy on the corresponding dataset (%) Improvement over the previous generation model (%)
korean_PP-OCRv5_mobile_rec Inference Model/Pretrained Model 88.0 65.0
latin_PP-OCRv5_mobile_rec Inference Model/Pretrained Model 84.7 46.8
eslav_PP-OCRv5_mobile_rec Inference Model/Pretrained Model 81.6 31.4
th_PP-OCRv5_mobile_rec Inference Model/Pretrained Model 82.68 -
el_PP-OCRv5_mobile_rec Inference Model/Pretrained Model 89.28 -
en_PP-OCRv5_mobile_rec Inference Model/Pretrained Model 85.25 11.0

Notes:

  • Korean Dataset: The latest PP-OCRv5 dataset containing 5,007 Korean text images.
  • Latin Script Language Dataset: The latest PP-OCRv5 dataset containing 3,111 images of Latin script languages.
  • East Slavic Language Dataset: The latest PP-OCRv5 dataset containing a total of 7,031 text images in Russian, Belarusian, and Ukrainian.
  • Thai dataset: The latest PP-OCRv5 constructed Thai dataset contains a total of 4,261 text images for recognition.
  • Greek dataset: The latest PP-OCRv5 constructed Greek dataset contains a total of 2,799 text images for recognition.
  • English dataset: The latest PP-OCRv5 constructed English dataset contains a total of 6,530 text images for recognition.

4. Supported Languages and Abbreviations

Language Description Abbreviation Language Description Abbreviation
Chinese Chinese & English ch Hungarian Hungarian hu
English English en Serbian (latin) Serbian (latin) rs_latin
French French fr Indonesian Indonesian id
German German de Occitan Occitan oc
Japanese Japanese japan Icelandic Icelandic is
Korean Korean korean Lithuanian Lithuanian lt
Traditional Chinese Chinese Traditional chinese_cht Maori Maori mi
Afrikaans Afrikaans af Malay Malay ms
Italian Italian it Dutch Dutch nl
Spanish Spanish es Norwegian Norwegian no
Bosnian Bosnian bs Polish Polish pl
Portuguese Portuguese pt Slovak Slovak sk
Czech Czech cs Slovenian Slovenian sl
Welsh Welsh cy Albanian Albanian sq
Danish Danish da Swedish Swedish sv
Estonian Estonian et Swahili Swahili sw
Irish Irish ga Tagalog Tagalog tl
Croatian Croatian hr Turkish Turkish tr
Uzbek Uzbek uz Latin Latin la
Russian Russian ru Belarusian Belarusian be
Ukrainian Ukrainian uk Thai Thai th
Greek Greek el

5. Models and Their Supported Languages

Model Supported Languages
korean_PP-OCRv5_mobile_rec Korean, English
latin_PP-OCRv5_mobile_rec English, French, German, Afrikaans, Italian, Spanish, Bosnian, Portuguese, Czech, Welsh, Danish, Estonian, Irish, Croatian, Uzbek, Hungarian, Serbian (Latin), Indonesian, Occitan, Icelandic, Lithuanian, Maori, Malay, Dutch, Norwegian, Polish, Slovak, Slovenian, Albanian, Swedish, Swahili, Tagalog, Turkish, Latin
eslav_PP-OCRv5_mobile_rec Russian, Belarusian, Ukrainian, English
th_PP-OCRv5_mobile_rec Thai, English
el_PP-OCRv5_mobile_rec Greek, English
en_PP-OCRv5_mobile_rec English

note: en_PP-OCRv5_mobile_rec is an optimized version based on the PP-OCRv5 model, specifically fine-tuned for English scenarios. It demonstrates higher recognition accuracy and better adaptability when processing English text.