mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			135 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
import os
 | 
						|
import sys
 | 
						|
 | 
						|
__dir__ = os.path.dirname(os.path.abspath(__file__))
 | 
						|
sys.path.append(__dir__)
 | 
						|
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
 | 
						|
 | 
						|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
 | 
						|
 | 
						|
import cv2
 | 
						|
import json
 | 
						|
import paddle
 | 
						|
 | 
						|
from ppocr.data import create_operators, transform
 | 
						|
from ppocr.modeling.architectures import build_model
 | 
						|
from ppocr.postprocess import build_post_process
 | 
						|
from ppocr.utils.save_load import load_model
 | 
						|
from ppocr.utils.utility import get_image_file_list
 | 
						|
import tools.program as program
 | 
						|
 | 
						|
 | 
						|
def draw_det_res(dt_boxes, config, img, img_name, save_path):
 | 
						|
    if len(dt_boxes) > 0:
 | 
						|
        import cv2
 | 
						|
        src_im = img
 | 
						|
        for box in dt_boxes:
 | 
						|
            box = box.astype(np.int32).reshape((-1, 1, 2))
 | 
						|
            cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
 | 
						|
        if not os.path.exists(save_path):
 | 
						|
            os.makedirs(save_path)
 | 
						|
        save_path = os.path.join(save_path, os.path.basename(img_name))
 | 
						|
        cv2.imwrite(save_path, src_im)
 | 
						|
        logger.info("The detected Image saved in {}".format(save_path))
 | 
						|
 | 
						|
 | 
						|
@paddle.no_grad()
 | 
						|
def main():
 | 
						|
    global_config = config['Global']
 | 
						|
 | 
						|
    # build model
 | 
						|
    model = build_model(config['Architecture'])
 | 
						|
 | 
						|
    load_model(config, model)
 | 
						|
    # build post process
 | 
						|
    post_process_class = build_post_process(config['PostProcess'])
 | 
						|
 | 
						|
    # create data ops
 | 
						|
    transforms = []
 | 
						|
    for op in config['Eval']['dataset']['transforms']:
 | 
						|
        op_name = list(op)[0]
 | 
						|
        if 'Label' in op_name:
 | 
						|
            continue
 | 
						|
        elif op_name == 'KeepKeys':
 | 
						|
            op[op_name]['keep_keys'] = ['image', 'shape']
 | 
						|
        transforms.append(op)
 | 
						|
 | 
						|
    ops = create_operators(transforms, global_config)
 | 
						|
 | 
						|
    save_res_path = config['Global']['save_res_path']
 | 
						|
    if not os.path.exists(os.path.dirname(save_res_path)):
 | 
						|
        os.makedirs(os.path.dirname(save_res_path))
 | 
						|
 | 
						|
    model.eval()
 | 
						|
    with open(save_res_path, "wb") as fout:
 | 
						|
        for file in get_image_file_list(config['Global']['infer_img']):
 | 
						|
            logger.info("infer_img: {}".format(file))
 | 
						|
            with open(file, 'rb') as f:
 | 
						|
                img = f.read()
 | 
						|
                data = {'image': img}
 | 
						|
            batch = transform(data, ops)
 | 
						|
 | 
						|
            images = np.expand_dims(batch[0], axis=0)
 | 
						|
            shape_list = np.expand_dims(batch[1], axis=0)
 | 
						|
            images = paddle.to_tensor(images)
 | 
						|
            preds = model(images)
 | 
						|
            post_result = post_process_class(preds, shape_list)
 | 
						|
 | 
						|
            src_img = cv2.imread(file)
 | 
						|
 | 
						|
            dt_boxes_json = []
 | 
						|
            # parser boxes if post_result is dict
 | 
						|
            if isinstance(post_result, dict):
 | 
						|
                det_box_json = {}
 | 
						|
                for k in post_result.keys():
 | 
						|
                    boxes = post_result[k][0]['points']
 | 
						|
                    dt_boxes_list = []
 | 
						|
                    for box in boxes:
 | 
						|
                        tmp_json = {"transcription": ""}
 | 
						|
                        tmp_json['points'] = box.tolist()
 | 
						|
                        dt_boxes_list.append(tmp_json)
 | 
						|
                    det_box_json[k] = dt_boxes_list
 | 
						|
                    save_det_path = os.path.dirname(config['Global'][
 | 
						|
                        'save_res_path']) + "/det_results_{}/".format(k)
 | 
						|
                    draw_det_res(boxes, config, src_img, file, save_det_path)
 | 
						|
            else:
 | 
						|
                boxes = post_result[0]['points']
 | 
						|
                dt_boxes_json = []
 | 
						|
                # write result
 | 
						|
                for box in boxes:
 | 
						|
                    tmp_json = {"transcription": ""}
 | 
						|
                    tmp_json['points'] = box.tolist()
 | 
						|
                    dt_boxes_json.append(tmp_json)
 | 
						|
                save_det_path = os.path.dirname(config['Global'][
 | 
						|
                    'save_res_path']) + "/det_results/"
 | 
						|
                draw_det_res(boxes, config, src_img, file, save_det_path)
 | 
						|
            otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
 | 
						|
            fout.write(otstr.encode())
 | 
						|
 | 
						|
    logger.info("success!")
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    config, device, logger, vdl_writer = program.preprocess()
 | 
						|
    main()
 |