mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			120 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # DB与DB++
 | ||
| 
 | ||
| - [1. 算法简介](#1)
 | ||
| - [2. 环境配置](#2)
 | ||
| - [3. 模型训练、评估、预测](#3)
 | ||
|     - [3.1 训练](#3-1)
 | ||
|     - [3.2 评估](#3-2)
 | ||
|     - [3.3 预测](#3-3)
 | ||
| - [4. 推理部署](#4)
 | ||
|     - [4.1 Python推理](#4-1)
 | ||
|     - [4.2 C++推理](#4-2)
 | ||
|     - [4.3 Serving服务化部署](#4-3)
 | ||
|     - [4.4 更多推理部署](#4-4)
 | ||
| - [5. FAQ](#5)
 | ||
| 
 | ||
| <a name="1"></a>
 | ||
| ## 1. 算法简介
 | ||
| 
 | ||
| 论文信息:
 | ||
| > [Real-time Scene Text Detection with Differentiable Binarization](https://arxiv.org/abs/1911.08947)
 | ||
| > Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang
 | ||
| > AAAI, 2020
 | ||
| 
 | ||
| > [Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion](https://arxiv.org/abs/2202.10304)
 | ||
| > Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang
 | ||
| > TPAMI, 2022
 | ||
| 
 | ||
| 
 | ||
| 在ICDAR2015文本检测公开数据集上,算法复现效果如下:
 | ||
| 
 | ||
| |模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
 | ||
| | --- | --- | --- | --- | --- | --- | --- |
 | ||
| |DB|ResNet50_vd|[configs/det/det_r50_vd_db.yml](../../configs/det/det_r50_vd_db.yml)|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
 | ||
| |DB|MobileNetV3|[configs/det/det_mv3_db.yml](../../configs/det/det_mv3_db.yml)|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
 | ||
| |DB++|ResNet50|[configs/det/det_r50_db++_icdar15.yml](../../configs/det/det_r50_db++_icdar15.yml)|90.89%|82.66%|86.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)|
 | ||
| 
 | ||
| 在TD_TR文本检测公开数据集上,算法复现效果如下:
 | ||
| 
 | ||
| |模型|骨干网络|配置文件|precision|recall|Hmean|下载链接|
 | ||
| | --- | --- | --- | --- | --- | --- | --- |
 | ||
| |DB++|ResNet50|[configs/det/det_r50_db++_td_tr.yml](../../configs/det/det_r50_db++_td_tr.yml)|92.92%|86.48%|89.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_td_tr_train.tar)|
 | ||
| 
 | ||
| 
 | ||
| <a name="2"></a>
 | ||
| ## 2. 环境配置
 | ||
| 请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
 | ||
| 
 | ||
| 
 | ||
| <a name="3"></a>
 | ||
| ## 3. 模型训练、评估、预测
 | ||
| 
 | ||
| 请参考[文本检测训练教程](./detection.md)。PaddleOCR对代码进行了模块化,训练不同的检测模型只需要**更换配置文件**即可。
 | ||
| 
 | ||
| 
 | ||
| <a name="4"></a>
 | ||
| ## 4. 推理部署
 | ||
| 
 | ||
| <a name="4-1"></a>
 | ||
| ### 4.1 Python推理
 | ||
| 首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar) ),可以使用如下命令进行转换:
 | ||
| 
 | ||
| ```shell
 | ||
| python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy  Global.save_inference_dir=./inference/det_db
 | ||
| ```
 | ||
| 
 | ||
| DB文本检测模型推理,可以执行如下命令:
 | ||
| 
 | ||
| ```shell
 | ||
| python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/" --det_algorithm="DB"
 | ||
| ```
 | ||
| 
 | ||
| 可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| **注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。
 | ||
| 
 | ||
| <a name="4-2"></a>
 | ||
| ### 4.2 C++推理
 | ||
| 
 | ||
| 准备好推理模型后,参考[cpp infer](../../deploy/cpp_infer/)教程进行操作即可。
 | ||
| 
 | ||
| <a name="4-3"></a>
 | ||
| ### 4.3 Serving服务化部署
 | ||
| 
 | ||
| 准备好推理模型后,参考[pdserving](../../deploy/pdserving/)教程进行Serving服务化部署,包括Python Serving和C++ Serving两种模式。
 | ||
| 
 | ||
| <a name="4-4"></a>
 | ||
| ### 4.4 更多推理部署
 | ||
| 
 | ||
| DB模型还支持以下推理部署方式:
 | ||
| 
 | ||
| - Paddle2ONNX推理:准备好推理模型后,参考[paddle2onnx](../../deploy/paddle2onnx/)教程操作。
 | ||
| 
 | ||
| <a name="5"></a>
 | ||
| ## 5. FAQ
 | ||
| 
 | ||
| 
 | ||
| ## 引用
 | ||
| 
 | ||
| ```bibtex
 | ||
| @inproceedings{liao2020real,
 | ||
|   title={Real-time scene text detection with differentiable binarization},
 | ||
|   author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
 | ||
|   booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
 | ||
|   volume={34},
 | ||
|   number={07},
 | ||
|   pages={11474--11481},
 | ||
|   year={2020}
 | ||
| }
 | ||
| 
 | ||
| @article{liao2022real,
 | ||
|   title={Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion},
 | ||
|   author={Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang},
 | ||
|   journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
 | ||
|   year={2022},
 | ||
|   publisher={IEEE}
 | ||
| }
 | ||
| ```
 | 
