mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			144 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			144 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| from PIL import Image, ImageEnhance, ImageOps
 | |
| import numpy as np
 | |
| import random
 | |
| import six
 | |
| 
 | |
| 
 | |
| class RawRandAugment(object):
 | |
|     def __init__(self,
 | |
|                  num_layers=2,
 | |
|                  magnitude=5,
 | |
|                  fillcolor=(128, 128, 128),
 | |
|                  **kwargs):
 | |
|         self.num_layers = num_layers
 | |
|         self.magnitude = magnitude
 | |
|         self.max_level = 10
 | |
| 
 | |
|         abso_level = self.magnitude / self.max_level
 | |
|         self.level_map = {
 | |
|             "shearX": 0.3 * abso_level,
 | |
|             "shearY": 0.3 * abso_level,
 | |
|             "translateX": 150.0 / 331 * abso_level,
 | |
|             "translateY": 150.0 / 331 * abso_level,
 | |
|             "rotate": 30 * abso_level,
 | |
|             "color": 0.9 * abso_level,
 | |
|             "posterize": int(4.0 * abso_level),
 | |
|             "solarize": 256.0 * abso_level,
 | |
|             "contrast": 0.9 * abso_level,
 | |
|             "sharpness": 0.9 * abso_level,
 | |
|             "brightness": 0.9 * abso_level,
 | |
|             "autocontrast": 0,
 | |
|             "equalize": 0,
 | |
|             "invert": 0
 | |
|         }
 | |
| 
 | |
|         # from https://stackoverflow.com/questions/5252170/
 | |
|         # specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
 | |
|         def rotate_with_fill(img, magnitude):
 | |
|             rot = img.convert("RGBA").rotate(magnitude)
 | |
|             return Image.composite(rot,
 | |
|                                    Image.new("RGBA", rot.size, (128, ) * 4),
 | |
|                                    rot).convert(img.mode)
 | |
| 
 | |
|         rnd_ch_op = random.choice
 | |
| 
 | |
|         self.func = {
 | |
|             "shearX": lambda img, magnitude: img.transform(
 | |
|                 img.size,
 | |
|                 Image.AFFINE,
 | |
|                 (1, magnitude * rnd_ch_op([-1, 1]), 0, 0, 1, 0),
 | |
|                 Image.BICUBIC,
 | |
|                 fillcolor=fillcolor),
 | |
|             "shearY": lambda img, magnitude: img.transform(
 | |
|                 img.size,
 | |
|                 Image.AFFINE,
 | |
|                 (1, 0, 0, magnitude * rnd_ch_op([-1, 1]), 1, 0),
 | |
|                 Image.BICUBIC,
 | |
|                 fillcolor=fillcolor),
 | |
|             "translateX": lambda img, magnitude: img.transform(
 | |
|                 img.size,
 | |
|                 Image.AFFINE,
 | |
|                 (1, 0, magnitude * img.size[0] * rnd_ch_op([-1, 1]), 0, 1, 0),
 | |
|                 fillcolor=fillcolor),
 | |
|             "translateY": lambda img, magnitude: img.transform(
 | |
|                 img.size,
 | |
|                 Image.AFFINE,
 | |
|                 (1, 0, 0, 0, 1, magnitude * img.size[1] * rnd_ch_op([-1, 1])),
 | |
|                 fillcolor=fillcolor),
 | |
|             "rotate": lambda img, magnitude: rotate_with_fill(img, magnitude),
 | |
|             "color": lambda img, magnitude: ImageEnhance.Color(img).enhance(
 | |
|                 1 + magnitude * rnd_ch_op([-1, 1])),
 | |
|             "posterize": lambda img, magnitude:
 | |
|             ImageOps.posterize(img, magnitude),
 | |
|             "solarize": lambda img, magnitude:
 | |
|             ImageOps.solarize(img, magnitude),
 | |
|             "contrast": lambda img, magnitude:
 | |
|             ImageEnhance.Contrast(img).enhance(
 | |
|                 1 + magnitude * rnd_ch_op([-1, 1])),
 | |
|             "sharpness": lambda img, magnitude:
 | |
|             ImageEnhance.Sharpness(img).enhance(
 | |
|                 1 + magnitude * rnd_ch_op([-1, 1])),
 | |
|             "brightness": lambda img, magnitude:
 | |
|             ImageEnhance.Brightness(img).enhance(
 | |
|                 1 + magnitude * rnd_ch_op([-1, 1])),
 | |
|             "autocontrast": lambda img, magnitude:
 | |
|             ImageOps.autocontrast(img),
 | |
|             "equalize": lambda img, magnitude: ImageOps.equalize(img),
 | |
|             "invert": lambda img, magnitude: ImageOps.invert(img)
 | |
|         }
 | |
| 
 | |
|     def __call__(self, img):
 | |
|         avaiable_op_names = list(self.level_map.keys())
 | |
|         for layer_num in range(self.num_layers):
 | |
|             op_name = np.random.choice(avaiable_op_names)
 | |
|             img = self.func[op_name](img, self.level_map[op_name])
 | |
|         return img
 | |
| 
 | |
| 
 | |
| class RandAugment(RawRandAugment):
 | |
|     """ RandAugment wrapper to auto fit different img types """
 | |
| 
 | |
|     def __init__(self, prob=0.5, *args, **kwargs):
 | |
|         self.prob = prob
 | |
|         if six.PY2:
 | |
|             super(RandAugment, self).__init__(*args, **kwargs)
 | |
|         else:
 | |
|             super().__init__(*args, **kwargs)
 | |
| 
 | |
|     def __call__(self, data):
 | |
|         if np.random.rand() > self.prob:
 | |
|             return data
 | |
|         img = data['image']
 | |
|         if not isinstance(img, Image.Image):
 | |
|             img = np.ascontiguousarray(img)
 | |
|             img = Image.fromarray(img)
 | |
| 
 | |
|         if six.PY2:
 | |
|             img = super(RandAugment, self).__call__(img)
 | |
|         else:
 | |
|             img = super().__call__(img)
 | |
| 
 | |
|         if isinstance(img, Image.Image):
 | |
|             img = np.asarray(img)
 | |
|         data['image'] = img
 | |
|         return data
 | 
