mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			93 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
from paddle import nn
 | 
						|
 | 
						|
from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr
 | 
						|
 | 
						|
 | 
						|
class Im2Seq(nn.Layer):
 | 
						|
    def __init__(self, in_channels, **kwargs):
 | 
						|
        super().__init__()
 | 
						|
        self.out_channels = in_channels
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        B, C, H, W = x.shape
 | 
						|
        assert H == 1
 | 
						|
        x = x.squeeze(axis=2)
 | 
						|
        x = x.transpose([0, 2, 1])  # (NTC)(batch, width, channels)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class EncoderWithRNN(nn.Layer):
 | 
						|
    def __init__(self, in_channels, hidden_size):
 | 
						|
        super(EncoderWithRNN, self).__init__()
 | 
						|
        self.out_channels = hidden_size * 2
 | 
						|
        self.lstm = nn.LSTM(
 | 
						|
            in_channels, hidden_size, direction='bidirectional', num_layers=2)
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x, _ = self.lstm(x)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class EncoderWithFC(nn.Layer):
 | 
						|
    def __init__(self, in_channels, hidden_size):
 | 
						|
        super(EncoderWithFC, self).__init__()
 | 
						|
        self.out_channels = hidden_size
 | 
						|
        weight_attr, bias_attr = get_para_bias_attr(
 | 
						|
            l2_decay=0.00001, k=in_channels)
 | 
						|
        self.fc = nn.Linear(
 | 
						|
            in_channels,
 | 
						|
            hidden_size,
 | 
						|
            weight_attr=weight_attr,
 | 
						|
            bias_attr=bias_attr,
 | 
						|
            name='reduce_encoder_fea')
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x = self.fc(x)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class SequenceEncoder(nn.Layer):
 | 
						|
    def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs):
 | 
						|
        super(SequenceEncoder, self).__init__()
 | 
						|
        self.encoder_reshape = Im2Seq(in_channels)
 | 
						|
        self.out_channels = self.encoder_reshape.out_channels
 | 
						|
        if encoder_type == 'reshape':
 | 
						|
            self.only_reshape = True
 | 
						|
        else:
 | 
						|
            support_encoder_dict = {
 | 
						|
                'reshape': Im2Seq,
 | 
						|
                'fc': EncoderWithFC,
 | 
						|
                'rnn': EncoderWithRNN
 | 
						|
            }
 | 
						|
            assert encoder_type in support_encoder_dict, '{} must in {}'.format(
 | 
						|
                encoder_type, support_encoder_dict.keys())
 | 
						|
 | 
						|
            self.encoder = support_encoder_dict[encoder_type](
 | 
						|
                self.encoder_reshape.out_channels, hidden_size)
 | 
						|
            self.out_channels = self.encoder.out_channels
 | 
						|
            self.only_reshape = False
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x = self.encoder_reshape(x)
 | 
						|
        if not self.only_reshape:
 | 
						|
            x = self.encoder(x)
 | 
						|
        return x
 |