mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			104 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
 | ||
| # Quick start of Chinese OCR model
 | ||
| 
 | ||
| ## 1. Prepare for the environment
 | ||
| 
 | ||
| Please refer to [quick installation](./installation_en.md) to configure the PaddleOCR operating environment.
 | ||
| 
 | ||
| * Note: Support the use of PaddleOCR through whl package installation,pelease refer  [PaddleOCR Package](./whl_en.md).
 | ||
| 
 | ||
| ## 2.inference models
 | ||
| 
 | ||
| The detection and recognition models on the mobile and server sides are as follows. For more models  (including multiple languages), please refer to [PP-OCR v2.0 series model list](../doc_ch/models_list.md)
 | ||
| 
 | ||
| | Model introduction     | Model name      | Recommended scene          | Detection model | Direction Classifier | Recognition model |
 | ||
| | ------------ | --------------- | ----------------|---- | ---------- | -------- |
 | ||
| | Ultra-lightweight Chinese OCR model (8.1M) | ch_ppocr_mobile_v2.0_xx |Mobile-side/Server-side|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar)      |
 | ||
| | Universal Chinese OCR model (143M)   | ch_ppocr_server_v2.0_xx |Server-side |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)          |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar)  |
 | ||
| 
 | ||
| 
 | ||
| * If `wget` is not installed in the windows environment, you can copy the link to the browser to download when downloading the model, then uncompress it and place it in the corresponding directory.
 | ||
| 
 | ||
| Copy the download address of the `inference model` for detection and recognition in the table above, and uncompress them.
 | ||
| 
 | ||
| ```
 | ||
| mkdir inference && cd inference
 | ||
| # Download the detection model and unzip
 | ||
| wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
 | ||
| # Download the recognition model and unzip
 | ||
| wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
 | ||
| # Download the direction classifier model and unzip
 | ||
| wget {url/of/classification/inference_model} && tar xf {name/of/classification/inference_model/package}
 | ||
| cd ..
 | ||
| ```
 | ||
| 
 | ||
| Take the ultra-lightweight model as an example:
 | ||
| 
 | ||
| ```
 | ||
| mkdir inference && cd inference
 | ||
| # Download the detection model of the ultra-lightweight Chinese OCR model and uncompress it
 | ||
| wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
 | ||
| # Download the recognition model of the ultra-lightweight Chinese OCR model and uncompress it
 | ||
| wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
 | ||
| # Download the angle classifier model of the ultra-lightweight Chinese OCR model and uncompress it
 | ||
| wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
 | ||
| cd ..
 | ||
| ```
 | ||
| 
 | ||
| After decompression, the file structure should be as follows:
 | ||
| 
 | ||
| ```
 | ||
| ├── ch_ppocr_mobile_v2.0_cls_infer
 | ||
| │   ├── inference.pdiparams
 | ||
| │   ├── inference.pdiparams.info
 | ||
| │   └── inference.pdmodel
 | ||
| ├── ch_ppocr_mobile_v2.0_det_infer
 | ||
| │   ├── inference.pdiparams
 | ||
| │   ├── inference.pdiparams.info
 | ||
| │   └── inference.pdmodel
 | ||
| ├── ch_ppocr_mobile_v2.0_rec_infer
 | ||
|     ├── inference.pdiparams
 | ||
|     ├── inference.pdiparams.info
 | ||
|     └── inference.pdmodel
 | ||
| ```
 | ||
| 
 | ||
| ## 3. Single image or image set prediction
 | ||
| 
 | ||
| * The following code implements text detection、angle class and recognition process. When performing prediction, you need to specify the path of a single image or image set through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `rec_model_dir` specifies the path to identify the inference model, the parameter `use_angle_cls` specifies whether to use the direction classifier, the parameter `cls_model_dir` specifies the path to identify the direction classifier model, the parameter `use_space_char` specifies whether to predict the space char. The visual results are saved to the `./inference_results` folder by default.
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| ```bash
 | ||
| 
 | ||
| # Predict a single image specified by image_dir
 | ||
| python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/"  --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
 | ||
| 
 | ||
| # Predict imageset specified by image_dir
 | ||
| python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/"  --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
 | ||
| 
 | ||
| # If you want to use the CPU for prediction, you need to set the use_gpu parameter to False
 | ||
| python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/"  --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True --use_gpu=False
 | ||
| ```
 | ||
| 
 | ||
| - Universal Chinese OCR model
 | ||
| 
 | ||
| Please follow the above steps to download the corresponding models and update the relevant parameters, The example is as follows.
 | ||
| 
 | ||
| ```
 | ||
| # Predict a single image specified by image_dir
 | ||
| python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_server_v2.0_det_infer/"  --rec_model_dir="./inference/ch_ppocr_server_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
 | ||
| ```
 | ||
| 
 | ||
| * Note
 | ||
|     - If you want to use the recognition model which does not support space char recognition, please update the source code to the latest version and add parameters `--use_space_char=False`.
 | ||
|     - If you do not want to use direction classifier, please update the source code to the latest version and add parameters `--use_angle_cls=False`.
 | ||
| 
 | ||
| 
 | ||
| For more text detection and recognition tandem reasoning, please refer to the document tutorial
 | ||
| : [Inference with Python inference engine](./inference_en.md)。
 | ||
| 
 | ||
| In addition, the tutorial also provides other deployment methods for the Chinese OCR model:
 | ||
| - [Server-side C++ inference](../../deploy/cpp_infer/readme_en.md)
 | ||
| - [Service deployment](../../deploy/pdserving/readme_en.md)
 | ||
| - [End-to-end deployment](../../deploy/lite/readme_en.md)
 | 
