mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-30 17:29:13 +00:00 
			
		
		
		
	 d28cb46061
			
		
	
	
		d28cb46061
		
			
		
	
	
	
	
		
			
			* skip unnecessary method calls in PaddleOCR.ocr pre-check meaningless args for PaddleOCR.ocr * style: make CI happy
		
			
				
	
	
		
			1065 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1065 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import os
 | |
| import sys
 | |
| import importlib
 | |
| 
 | |
| __dir__ = os.path.dirname(__file__)
 | |
| 
 | |
| from paddle.utils import try_import
 | |
| 
 | |
| sys.path.append(os.path.join(__dir__, ""))
 | |
| 
 | |
| import cv2
 | |
| from copy import deepcopy
 | |
| import logging
 | |
| import numpy as np
 | |
| from pathlib import Path
 | |
| import base64
 | |
| from io import BytesIO
 | |
| import pprint
 | |
| from PIL import Image
 | |
| 
 | |
| 
 | |
| def _import_file(module_name, file_path, make_importable=False):
 | |
|     spec = importlib.util.spec_from_file_location(module_name, file_path)
 | |
|     module = importlib.util.module_from_spec(spec)
 | |
|     spec.loader.exec_module(module)
 | |
|     if make_importable:
 | |
|         sys.modules[module_name] = module
 | |
|     return module
 | |
| 
 | |
| 
 | |
| tools = _import_file(
 | |
|     "tools", os.path.join(__dir__, "tools/__init__.py"), make_importable=True
 | |
| )
 | |
| ppocr = importlib.import_module("ppocr", "paddleocr")
 | |
| ppstructure = importlib.import_module("ppstructure", "paddleocr")
 | |
| from ppocr.utils.logging import get_logger
 | |
| 
 | |
| from ppocr.utils.utility import (
 | |
|     check_and_read,
 | |
|     get_image_file_list,
 | |
|     alpha_to_color,
 | |
|     binarize_img,
 | |
| )
 | |
| from ppocr.utils.network import (
 | |
|     maybe_download,
 | |
|     download_with_progressbar,
 | |
|     is_link,
 | |
|     confirm_model_dir_url,
 | |
| )
 | |
| from tools.infer import predict_system
 | |
| from tools.infer.utility import draw_ocr, str2bool, check_gpu
 | |
| from ppstructure.utility import init_args, draw_structure_result
 | |
| from ppstructure.predict_system import StructureSystem, save_structure_res, to_excel
 | |
| from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx
 | |
| from ppstructure.recovery.recovery_to_markdown import convert_info_markdown
 | |
| 
 | |
| logger = get_logger()
 | |
| 
 | |
| __all__ = [
 | |
|     "PaddleOCR",
 | |
|     "PPStructure",
 | |
|     "draw_ocr",
 | |
|     "draw_structure_result",
 | |
|     "save_structure_res",
 | |
|     "download_with_progressbar",
 | |
|     "to_excel",
 | |
|     "sorted_layout_boxes",
 | |
|     "convert_info_docx",
 | |
|     "convert_info_markdown",
 | |
| ]
 | |
| 
 | |
| SUPPORT_DET_MODEL = ["DB"]
 | |
| SUPPORT_REC_MODEL = ["CRNN", "SVTR_LCNet"]
 | |
| BASE_DIR = os.environ.get("PADDLE_OCR_BASE_DIR", os.path.expanduser("~/.paddleocr/"))
 | |
| 
 | |
| DEFAULT_OCR_MODEL_VERSION = "PP-OCRv4"
 | |
| SUPPORT_OCR_MODEL_VERSION = ["PP-OCR", "PP-OCRv2", "PP-OCRv3", "PP-OCRv4"]
 | |
| DEFAULT_STRUCTURE_MODEL_VERSION = "PP-StructureV2"
 | |
| SUPPORT_STRUCTURE_MODEL_VERSION = ["PP-Structure", "PP-StructureV2"]
 | |
| MODEL_URLS = {
 | |
|     "OCR": {
 | |
|         "PP-OCRv4": {
 | |
|             "det": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_det_infer.tar",
 | |
|                 },
 | |
|                 "en": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar",
 | |
|                 },
 | |
|                 "ml": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"
 | |
|                 },
 | |
|             },
 | |
|             "rec": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
 | |
|                 },
 | |
|                 "ch_doc": {
 | |
|                     "url": "https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0rc0/PP-OCRv4_server_rec_doc_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/ppocrv4_doc_dict.txt",
 | |
|                 },
 | |
|                 "en": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/english/en_PP-OCRv4_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/en_dict.txt",
 | |
|                 },
 | |
|                 "korean": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/korean_PP-OCRv4_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/korean_dict.txt",
 | |
|                 },
 | |
|                 "japan": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/japan_PP-OCRv4_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/japan_dict.txt",
 | |
|                 },
 | |
|                 "chinese_cht": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt",
 | |
|                 },
 | |
|                 "ta": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ta_PP-OCRv4_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/ta_dict.txt",
 | |
|                 },
 | |
|                 "te": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/te_PP-OCRv4_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/te_dict.txt",
 | |
|                 },
 | |
|                 "ka": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ka_PP-OCRv4_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/ka_dict.txt",
 | |
|                 },
 | |
|                 "latin": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/latin_dict.txt",
 | |
|                 },
 | |
|                 "arabic": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/arabic_PP-OCRv4_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/arabic_dict.txt",
 | |
|                 },
 | |
|                 "cyrillic": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt",
 | |
|                 },
 | |
|                 "devanagari": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/devanagari_PP-OCRv4_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/devanagari_dict.txt",
 | |
|                 },
 | |
|             },
 | |
|             "cls": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
 | |
|                 }
 | |
|             },
 | |
|         },
 | |
|         "PP-OCRv3": {
 | |
|             "det": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar",
 | |
|                 },
 | |
|                 "en": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar",
 | |
|                 },
 | |
|                 "ml": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"
 | |
|                 },
 | |
|             },
 | |
|             "rec": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
 | |
|                 },
 | |
|                 "en": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/en_dict.txt",
 | |
|                 },
 | |
|                 "korean": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/korean_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/korean_dict.txt",
 | |
|                 },
 | |
|                 "japan": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/japan_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/japan_dict.txt",
 | |
|                 },
 | |
|                 "chinese_cht": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt",
 | |
|                 },
 | |
|                 "ta": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ta_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/ta_dict.txt",
 | |
|                 },
 | |
|                 "te": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/te_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/te_dict.txt",
 | |
|                 },
 | |
|                 "ka": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ka_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/ka_dict.txt",
 | |
|                 },
 | |
|                 "latin": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/latin_dict.txt",
 | |
|                 },
 | |
|                 "arabic": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/arabic_dict.txt",
 | |
|                 },
 | |
|                 "cyrillic": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt",
 | |
|                 },
 | |
|                 "devanagari": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/devanagari_PP-OCRv3_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/devanagari_dict.txt",
 | |
|                 },
 | |
|             },
 | |
|             "cls": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
 | |
|                 }
 | |
|             },
 | |
|         },
 | |
|         "PP-OCRv2": {
 | |
|             "det": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar",
 | |
|                 },
 | |
|             },
 | |
|             "rec": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
 | |
|                 }
 | |
|             },
 | |
|             "cls": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
 | |
|                 }
 | |
|             },
 | |
|         },
 | |
|         "PP-OCR": {
 | |
|             "det": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar",
 | |
|                 },
 | |
|                 "en": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_ppocr_mobile_v2.0_det_infer.tar",
 | |
|                 },
 | |
|                 "structure": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar"
 | |
|                 },
 | |
|             },
 | |
|             "rec": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
 | |
|                 },
 | |
|                 "en": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/en_dict.txt",
 | |
|                 },
 | |
|                 "french": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/french_dict.txt",
 | |
|                 },
 | |
|                 "german": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/german_dict.txt",
 | |
|                 },
 | |
|                 "korean": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/korean_dict.txt",
 | |
|                 },
 | |
|                 "japan": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/japan_dict.txt",
 | |
|                 },
 | |
|                 "chinese_cht": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt",
 | |
|                 },
 | |
|                 "ta": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/ta_dict.txt",
 | |
|                 },
 | |
|                 "te": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/te_dict.txt",
 | |
|                 },
 | |
|                 "ka": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/ka_dict.txt",
 | |
|                 },
 | |
|                 "latin": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/latin_dict.txt",
 | |
|                 },
 | |
|                 "arabic": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/arabic_dict.txt",
 | |
|                 },
 | |
|                 "cyrillic": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/cyrillic_dict.txt",
 | |
|                 },
 | |
|                 "devanagari": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar",
 | |
|                     "dict_path": "./ppocr/utils/dict/devanagari_dict.txt",
 | |
|                 },
 | |
|                 "structure": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar",
 | |
|                     "dict_path": "ppocr/utils/dict/table_dict.txt",
 | |
|                 },
 | |
|             },
 | |
|             "cls": {
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
 | |
|                 }
 | |
|             },
 | |
|         },
 | |
|     },
 | |
|     "STRUCTURE": {
 | |
|         "PP-Structure": {
 | |
|             "table": {
 | |
|                 "en": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar",
 | |
|                     "dict_path": "ppocr/utils/dict/table_structure_dict.txt",
 | |
|                 }
 | |
|             }
 | |
|         },
 | |
|         "PP-StructureV2": {
 | |
|             "table": {
 | |
|                 "en": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/paddle3.0b2/en_ppstructure_mobile_v2.0_SLANet_infer.tar",
 | |
|                     "dict_path": "ppocr/utils/dict/table_structure_dict.txt",
 | |
|                 },
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/paddle3.0b2/ch_ppstructure_mobile_v2.0_SLANet_infer.tar",
 | |
|                     "dict_path": "ppocr/utils/dict/table_structure_dict_ch.txt",
 | |
|                 },
 | |
|             },
 | |
|             "layout": {
 | |
|                 "en": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar",
 | |
|                     "dict_path": "ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt",
 | |
|                 },
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar",
 | |
|                     "dict_path": "ppocr/utils/dict/layout_dict/layout_cdla_dict.txt",
 | |
|                 },
 | |
|             },
 | |
|             "formula": {
 | |
|                 "en": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/contribution/rec_latex_ocr_infer.tar",
 | |
|                     "dict_path": "ppocr/utils/dict/latex_ocr_tokenizer.json",
 | |
|                 },
 | |
|                 "ch": {
 | |
|                     "url": "https://paddleocr.bj.bcebos.com/contribution/rec_latex_ocr_infer.tar",
 | |
|                     "dict_path": "ppocr/utils/dict/latex_ocr_tokenizer.json",
 | |
|                 },
 | |
|             },
 | |
|         },
 | |
|     },
 | |
| }
 | |
| 
 | |
| 
 | |
| def parse_args(mMain=True):
 | |
|     import argparse
 | |
| 
 | |
|     parser = init_args()
 | |
|     parser.add_help = mMain
 | |
|     parser.add_argument("--lang", type=str, default="ch")
 | |
|     parser.add_argument("--det", type=str2bool, default=True)
 | |
|     parser.add_argument("--rec", type=str2bool, default=True)
 | |
|     parser.add_argument("--type", type=str, default="ocr")
 | |
|     parser.add_argument("--savefile", type=str2bool, default=False)
 | |
|     parser.add_argument(
 | |
|         "--ocr_version",
 | |
|         type=str,
 | |
|         choices=SUPPORT_OCR_MODEL_VERSION,
 | |
|         default="PP-OCRv4",
 | |
|         help="OCR Model version, the current model support list is as follows: "
 | |
|         "1. PP-OCRv4/v3 Support Chinese and English detection and recognition model, and direction classifier model"
 | |
|         "2. PP-OCRv2 Support Chinese detection and recognition model. "
 | |
|         "3. PP-OCR support Chinese detection, recognition and direction classifier and multilingual recognition model.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--structure_version",
 | |
|         type=str,
 | |
|         choices=SUPPORT_STRUCTURE_MODEL_VERSION,
 | |
|         default="PP-StructureV2",
 | |
|         help="Model version, the current model support list is as follows:"
 | |
|         " 1. PP-Structure Support en table structure model."
 | |
|         " 2. PP-StructureV2 Support ch and en table structure model.",
 | |
|     )
 | |
| 
 | |
|     for action in parser._actions:
 | |
|         if action.dest in [
 | |
|             "rec_char_dict_path",
 | |
|             "table_char_dict_path",
 | |
|             "layout_dict_path",
 | |
|             "formula_char_dict_path",
 | |
|         ]:
 | |
|             action.default = None
 | |
|     if mMain:
 | |
|         return parser.parse_args()
 | |
|     else:
 | |
|         inference_args_dict = {}
 | |
|         for action in parser._actions:
 | |
|             inference_args_dict[action.dest] = action.default
 | |
|         return argparse.Namespace(**inference_args_dict)
 | |
| 
 | |
| 
 | |
| def parse_lang(lang):
 | |
|     latin_lang = [
 | |
|         "af",
 | |
|         "az",
 | |
|         "bs",
 | |
|         "cs",
 | |
|         "cy",
 | |
|         "da",
 | |
|         "de",
 | |
|         "es",
 | |
|         "et",
 | |
|         "fr",
 | |
|         "ga",
 | |
|         "hr",
 | |
|         "hu",
 | |
|         "id",
 | |
|         "is",
 | |
|         "it",
 | |
|         "ku",
 | |
|         "la",
 | |
|         "lt",
 | |
|         "lv",
 | |
|         "mi",
 | |
|         "ms",
 | |
|         "mt",
 | |
|         "nl",
 | |
|         "no",
 | |
|         "oc",
 | |
|         "pi",
 | |
|         "pl",
 | |
|         "pt",
 | |
|         "ro",
 | |
|         "rs_latin",
 | |
|         "sk",
 | |
|         "sl",
 | |
|         "sq",
 | |
|         "sv",
 | |
|         "sw",
 | |
|         "tl",
 | |
|         "tr",
 | |
|         "uz",
 | |
|         "vi",
 | |
|         "french",
 | |
|         "german",
 | |
|     ]
 | |
|     arabic_lang = ["ar", "fa", "ug", "ur"]
 | |
|     cyrillic_lang = [
 | |
|         "ru",
 | |
|         "rs_cyrillic",
 | |
|         "be",
 | |
|         "bg",
 | |
|         "uk",
 | |
|         "mn",
 | |
|         "abq",
 | |
|         "ady",
 | |
|         "kbd",
 | |
|         "ava",
 | |
|         "dar",
 | |
|         "inh",
 | |
|         "che",
 | |
|         "lbe",
 | |
|         "lez",
 | |
|         "tab",
 | |
|     ]
 | |
|     devanagari_lang = [
 | |
|         "hi",
 | |
|         "mr",
 | |
|         "ne",
 | |
|         "bh",
 | |
|         "mai",
 | |
|         "ang",
 | |
|         "bho",
 | |
|         "mah",
 | |
|         "sck",
 | |
|         "new",
 | |
|         "gom",
 | |
|         "sa",
 | |
|         "bgc",
 | |
|     ]
 | |
|     if lang in latin_lang:
 | |
|         lang = "latin"
 | |
|     elif lang in arabic_lang:
 | |
|         lang = "arabic"
 | |
|     elif lang in cyrillic_lang:
 | |
|         lang = "cyrillic"
 | |
|     elif lang in devanagari_lang:
 | |
|         lang = "devanagari"
 | |
|     assert (
 | |
|         lang in MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"]
 | |
|     ), "param lang must in {}, but got {}".format(
 | |
|         MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"].keys(), lang
 | |
|     )
 | |
|     if lang in ["ch", "ch_doc"]:
 | |
|         det_lang = "ch"
 | |
|     elif lang == "structure":
 | |
|         det_lang = "structure"
 | |
|     elif lang in ["en", "latin"]:
 | |
|         det_lang = "en"
 | |
|     else:
 | |
|         det_lang = "ml"
 | |
|     return lang, det_lang
 | |
| 
 | |
| 
 | |
| def get_model_config(type, version, model_type, lang):
 | |
|     if type == "OCR":
 | |
|         DEFAULT_MODEL_VERSION = DEFAULT_OCR_MODEL_VERSION
 | |
|     elif type == "STRUCTURE":
 | |
|         DEFAULT_MODEL_VERSION = DEFAULT_STRUCTURE_MODEL_VERSION
 | |
|     else:
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     model_urls = MODEL_URLS[type]
 | |
|     if version not in model_urls:
 | |
|         version = DEFAULT_MODEL_VERSION
 | |
|     if model_type not in model_urls[version]:
 | |
|         if model_type in model_urls[DEFAULT_MODEL_VERSION]:
 | |
|             version = DEFAULT_MODEL_VERSION
 | |
|         else:
 | |
|             logger.error(
 | |
|                 "{} models is not support, we only support {}".format(
 | |
|                     model_type, model_urls[DEFAULT_MODEL_VERSION].keys()
 | |
|                 )
 | |
|             )
 | |
|             sys.exit(-1)
 | |
| 
 | |
|     if lang not in model_urls[version][model_type]:
 | |
|         if lang in model_urls[DEFAULT_MODEL_VERSION][model_type]:
 | |
|             version = DEFAULT_MODEL_VERSION
 | |
|         else:
 | |
|             logger.error(
 | |
|                 "lang {} is not support, we only support {} for {} models".format(
 | |
|                     lang,
 | |
|                     model_urls[DEFAULT_MODEL_VERSION][model_type].keys(),
 | |
|                     model_type,
 | |
|                 )
 | |
|             )
 | |
|             sys.exit(-1)
 | |
|     return model_urls[version][model_type][lang]
 | |
| 
 | |
| 
 | |
| def img_decode(content: bytes):
 | |
|     np_arr = np.frombuffer(content, dtype=np.uint8)
 | |
|     return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)
 | |
| 
 | |
| 
 | |
| def check_img(img, alpha_color=(255, 255, 255)):
 | |
|     """
 | |
|     Check the image data. If it is another type of image file, try to decode it into a numpy array.
 | |
|     The inference network requires three-channel images, So the following channel conversions are done
 | |
|         single channel image: Gray to RGB R←Y,G←Y,B←Y
 | |
|         four channel image: alpha_to_color
 | |
|     args:
 | |
|         img: image data
 | |
|             file format: jpg, png and other image formats that opencv can decode, as well as gif and pdf formats
 | |
|             storage type: binary image, net image file, local image file
 | |
|         alpha_color: Background color in images in RGBA format
 | |
|         return: numpy.array (h, w, 3) or list (p, h, w, 3) (p: page of pdf), boolean, boolean
 | |
|     """
 | |
|     flag_gif, flag_pdf = False, False
 | |
|     if isinstance(img, bytes):
 | |
|         img = img_decode(img)
 | |
|     if isinstance(img, str):
 | |
|         # download net image
 | |
|         if is_link(img):
 | |
|             download_with_progressbar(img, "tmp.jpg")
 | |
|             img = "tmp.jpg"
 | |
|         image_file = img
 | |
|         img, flag_gif, flag_pdf = check_and_read(image_file)
 | |
|         if not flag_gif and not flag_pdf:
 | |
|             with open(image_file, "rb") as f:
 | |
|                 img_str = f.read()
 | |
|                 img = img_decode(img_str)
 | |
|             if img is None:
 | |
|                 try:
 | |
|                     buf = BytesIO()
 | |
|                     image = BytesIO(img_str)
 | |
|                     im = Image.open(image)
 | |
|                     rgb = im.convert("RGB")
 | |
|                     rgb.save(buf, "jpeg")
 | |
|                     buf.seek(0)
 | |
|                     image_bytes = buf.read()
 | |
|                     data_base64 = str(base64.b64encode(image_bytes), encoding="utf-8")
 | |
|                     image_decode = base64.b64decode(data_base64)
 | |
|                     img_array = np.frombuffer(image_decode, np.uint8)
 | |
|                     img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
 | |
|                 except:
 | |
|                     logger.error("error in loading image:{}".format(image_file))
 | |
|                     return None, flag_gif, flag_pdf
 | |
|         if img is None:
 | |
|             logger.error("error in loading image:{}".format(image_file))
 | |
|             return None, flag_gif, flag_pdf
 | |
|     # single channel image array.shape:h,w
 | |
|     if isinstance(img, np.ndarray) and len(img.shape) == 2:
 | |
|         img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
 | |
|     # four channel image array.shape:h,w,c
 | |
|     if isinstance(img, np.ndarray) and len(img.shape) == 3 and img.shape[2] == 4:
 | |
|         img = alpha_to_color(img, alpha_color)
 | |
|     return img, flag_gif, flag_pdf
 | |
| 
 | |
| 
 | |
| class PaddleOCR(predict_system.TextSystem):
 | |
|     def __init__(self, **kwargs):
 | |
|         """
 | |
|         paddleocr package
 | |
|         args:
 | |
|             **kwargs: other params show in paddleocr --help
 | |
|         """
 | |
|         params = parse_args(mMain=False)
 | |
|         params.__dict__.update(**kwargs)
 | |
|         assert (
 | |
|             params.ocr_version in SUPPORT_OCR_MODEL_VERSION
 | |
|         ), "ocr_version must in {}, but get {}".format(
 | |
|             SUPPORT_OCR_MODEL_VERSION, params.ocr_version
 | |
|         )
 | |
|         params.use_gpu = check_gpu(params.use_gpu)
 | |
| 
 | |
|         if not params.show_log:
 | |
|             logger.setLevel(logging.INFO)
 | |
|         self.use_angle_cls = params.use_angle_cls
 | |
|         lang, det_lang = parse_lang(params.lang)
 | |
| 
 | |
|         # init model dir
 | |
|         det_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)
 | |
|         params.det_model_dir, det_url = confirm_model_dir_url(
 | |
|             params.det_model_dir,
 | |
|             os.path.join(BASE_DIR, "whl", "det", det_lang),
 | |
|             det_model_config["url"],
 | |
|         )
 | |
|         rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)
 | |
|         params.rec_model_dir, rec_url = confirm_model_dir_url(
 | |
|             params.rec_model_dir,
 | |
|             os.path.join(BASE_DIR, "whl", "rec", lang),
 | |
|             rec_model_config["url"],
 | |
|         )
 | |
|         cls_model_config = get_model_config("OCR", params.ocr_version, "cls", "ch")
 | |
|         params.cls_model_dir, cls_url = confirm_model_dir_url(
 | |
|             params.cls_model_dir,
 | |
|             os.path.join(BASE_DIR, "whl", "cls"),
 | |
|             cls_model_config["url"],
 | |
|         )
 | |
|         if params.ocr_version in ["PP-OCRv3", "PP-OCRv4"]:
 | |
|             params.rec_image_shape = "3, 48, 320"
 | |
|         else:
 | |
|             params.rec_image_shape = "3, 32, 320"
 | |
|         if kwargs.get("rec_image_shape") is not None:
 | |
|             params.rec_image_shape = kwargs.get("rec_image_shape")
 | |
|         # download model if using paddle infer
 | |
|         if not params.use_onnx:
 | |
|             maybe_download(params.det_model_dir, det_url)
 | |
|             maybe_download(params.rec_model_dir, rec_url)
 | |
|             maybe_download(params.cls_model_dir, cls_url)
 | |
| 
 | |
|         if params.det_algorithm not in SUPPORT_DET_MODEL:
 | |
|             logger.error("det_algorithm must in {}".format(SUPPORT_DET_MODEL))
 | |
|             sys.exit(0)
 | |
|         if params.rec_algorithm not in SUPPORT_REC_MODEL:
 | |
|             logger.error("rec_algorithm must in {}".format(SUPPORT_REC_MODEL))
 | |
|             sys.exit(0)
 | |
| 
 | |
|         if params.rec_char_dict_path is None:
 | |
|             params.rec_char_dict_path = str(
 | |
|                 Path(__file__).parent / rec_model_config["dict_path"]
 | |
|             )
 | |
| 
 | |
|         logger.debug(params)
 | |
|         # init det_model and rec_model
 | |
|         super().__init__(params)
 | |
|         self.page_num = params.page_num
 | |
| 
 | |
|     def ocr(
 | |
|         self,
 | |
|         img,
 | |
|         det=True,
 | |
|         rec=True,
 | |
|         cls=True,
 | |
|         bin=False,
 | |
|         inv=False,
 | |
|         alpha_color=(255, 255, 255),
 | |
|         slice={},
 | |
|     ):
 | |
|         """
 | |
|         OCR with PaddleOCR
 | |
| 
 | |
|         Args:
 | |
|             img: Image for OCR. It can be an ndarray, img_path, or a list of ndarrays.
 | |
|             det: Use text detection or not. If False, only text recognition will be executed. Default is True.
 | |
|             rec: Use text recognition or not. If False, only text detection will be executed. Default is True.
 | |
|             cls: Use angle classifier or not. Default is True. If True, the text with a rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance.
 | |
|             bin: Binarize image to black and white. Default is False.
 | |
|             inv: Invert image colors. Default is False.
 | |
|             alpha_color: Set RGB color Tuple for transparent parts replacement. Default is pure white.
 | |
|             slice: Use sliding window inference for large images. Both det and rec must be True. Requires int values for slice["horizontal_stride"], slice["vertical_stride"], slice["merge_x_thres"], slice["merge_y_thres"] (See doc/doc_en/slice_en.md). Default is {}.
 | |
| 
 | |
|         Returns:
 | |
|             If both det and rec are True, returns a list of OCR results for each image. Each OCR result is a list of bounding boxes and recognized text for each detected text region.
 | |
|             If det is True and rec is False, returns a list of detected bounding boxes for each image.
 | |
|             If det is False and rec is True, returns a list of recognized text for each image.
 | |
|             If both det and rec are False, returns a list of angle classification results for each image.
 | |
| 
 | |
|         Raises:
 | |
|             AssertionError: If the input image is not of type ndarray, list, str, or bytes.
 | |
|             SystemExit: If det is True and the input is a list of images.
 | |
| 
 | |
|         Note:
 | |
|             - If the angle classifier is not initialized (use_angle_cls=False), it will not be used during the forward process.
 | |
|             - For PDF files, if the input is a list of images and the page_num is specified, only the first page_num images will be processed.
 | |
|             - The preprocess_image function is used to preprocess the input image by applying alpha color replacement, inversion, and binarization if specified.
 | |
|         """
 | |
|         assert (
 | |
|             det or rec or cls
 | |
|         ), "det and rec and cls can not be False at the same time"
 | |
|         assert isinstance(img, (np.ndarray, list, str, bytes))
 | |
|         if isinstance(img, list) and det == True:
 | |
|             logger.error("When input a list of images, det must be false")
 | |
|             exit(0)
 | |
|         if cls == True and self.use_angle_cls == False:
 | |
|             logger.warning(
 | |
|                 "Since the angle classifier is not initialized, it will not be used during the forward process"
 | |
|             )
 | |
| 
 | |
|         img, flag_gif, flag_pdf = check_img(img, alpha_color)
 | |
|         # for infer pdf file
 | |
|         if isinstance(img, list) and flag_pdf:
 | |
|             if self.page_num > len(img) or self.page_num == 0:
 | |
|                 imgs = img
 | |
|             else:
 | |
|                 imgs = img[: self.page_num]
 | |
|         else:
 | |
|             imgs = [img]
 | |
| 
 | |
|         def preprocess_image(_image):
 | |
|             _image = alpha_to_color(_image, alpha_color)
 | |
|             if inv:
 | |
|                 _image = cv2.bitwise_not(_image)
 | |
|             if bin:
 | |
|                 _image = binarize_img(_image)
 | |
|             return _image
 | |
| 
 | |
|         if det and rec:
 | |
|             ocr_res = []
 | |
|             for img in imgs:
 | |
|                 img = preprocess_image(img)
 | |
|                 dt_boxes, rec_res, _ = self.__call__(img, cls, slice)
 | |
|                 if not dt_boxes and not rec_res:
 | |
|                     ocr_res.append(None)
 | |
|                     continue
 | |
|                 tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
 | |
|                 ocr_res.append(tmp_res)
 | |
|             return ocr_res
 | |
|         elif det and not rec:
 | |
|             ocr_res = []
 | |
|             for img in imgs:
 | |
|                 img = preprocess_image(img)
 | |
|                 dt_boxes, elapse = self.text_detector(img)
 | |
|                 if dt_boxes.size == 0:
 | |
|                     ocr_res.append(None)
 | |
|                     continue
 | |
|                 tmp_res = [box.tolist() for box in dt_boxes]
 | |
|                 ocr_res.append(tmp_res)
 | |
|             return ocr_res
 | |
|         elif rec or cls:
 | |
|             ocr_res = []
 | |
|             cls_res = []
 | |
|             for img in imgs:
 | |
|                 if not isinstance(img, list):
 | |
|                     img = preprocess_image(img)
 | |
|                     img = [img]
 | |
|                 if self.use_angle_cls and cls:
 | |
|                     img, cls_res_tmp, elapse = self.text_classifier(img)
 | |
|                     if not rec:
 | |
|                         cls_res.append(cls_res_tmp)
 | |
|                         continue
 | |
|                 rec_res, elapse = self.text_recognizer(img)
 | |
|                 ocr_res.append(rec_res)
 | |
|             if not rec:
 | |
|                 return cls_res
 | |
|             return ocr_res
 | |
|         else:
 | |
|             logger.error("det and rec and cls can not be False at the same time")
 | |
|             exit(0)
 | |
| 
 | |
| 
 | |
| class PPStructure(StructureSystem):
 | |
|     """
 | |
|     PPStructure class represents the structure analysis system for PaddleOCR.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, **kwargs):
 | |
|         """
 | |
|         Initializes the PPStructure object with the given parameters.
 | |
| 
 | |
|         Args:
 | |
|             **kwargs: Additional keyword arguments to customize the behavior of the structure analysis system.
 | |
| 
 | |
|         Raises:
 | |
|             AssertionError: If the structure version is not supported.
 | |
| 
 | |
|         """
 | |
|         params = parse_args(mMain=False)
 | |
|         params.__dict__.update(**kwargs)
 | |
|         assert (
 | |
|             params.structure_version in SUPPORT_STRUCTURE_MODEL_VERSION
 | |
|         ), "structure_version must in {}, but get {}".format(
 | |
|             SUPPORT_STRUCTURE_MODEL_VERSION, params.structure_version
 | |
|         )
 | |
|         params.use_gpu = check_gpu(params.use_gpu)
 | |
|         params.mode = "structure"
 | |
| 
 | |
|         if not params.show_log:
 | |
|             logger.setLevel(logging.INFO)
 | |
|         lang, det_lang = parse_lang(params.lang)
 | |
|         if lang == "ch":
 | |
|             table_lang = "ch"
 | |
|         else:
 | |
|             table_lang = "en"
 | |
|         if params.structure_version == "PP-Structure":
 | |
|             params.merge_no_span_structure = False
 | |
| 
 | |
|         # init model dir
 | |
|         det_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)
 | |
|         params.det_model_dir, det_url = confirm_model_dir_url(
 | |
|             params.det_model_dir,
 | |
|             os.path.join(BASE_DIR, "whl", "det", det_lang),
 | |
|             det_model_config["url"],
 | |
|         )
 | |
|         rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)
 | |
|         params.rec_model_dir, rec_url = confirm_model_dir_url(
 | |
|             params.rec_model_dir,
 | |
|             os.path.join(BASE_DIR, "whl", "rec", lang),
 | |
|             rec_model_config["url"],
 | |
|         )
 | |
|         table_model_config = get_model_config(
 | |
|             "STRUCTURE", params.structure_version, "table", table_lang
 | |
|         )
 | |
|         params.table_model_dir, table_url = confirm_model_dir_url(
 | |
|             params.table_model_dir,
 | |
|             os.path.join(BASE_DIR, "whl", "table"),
 | |
|             table_model_config["url"],
 | |
|         )
 | |
|         layout_model_config = get_model_config(
 | |
|             "STRUCTURE", params.structure_version, "layout", lang
 | |
|         )
 | |
|         params.layout_model_dir, layout_url = confirm_model_dir_url(
 | |
|             params.layout_model_dir,
 | |
|             os.path.join(BASE_DIR, "whl", "layout"),
 | |
|             layout_model_config["url"],
 | |
|         )
 | |
|         formula_model_config = get_model_config(
 | |
|             "STRUCTURE", params.structure_version, "formula", lang
 | |
|         )
 | |
|         params.formula_model_dir, formula_url = confirm_model_dir_url(
 | |
|             params.formula_model_dir,
 | |
|             os.path.join(BASE_DIR, "whl", "formula"),
 | |
|             formula_model_config["url"],
 | |
|         )
 | |
|         # download model
 | |
|         if not params.use_onnx:
 | |
|             maybe_download(params.det_model_dir, det_url)
 | |
|             maybe_download(params.rec_model_dir, rec_url)
 | |
|             maybe_download(params.table_model_dir, table_url)
 | |
|             maybe_download(params.layout_model_dir, layout_url)
 | |
|             maybe_download(params.formula_model_dir, formula_url)
 | |
| 
 | |
|         if params.rec_char_dict_path is None:
 | |
|             params.rec_char_dict_path = str(
 | |
|                 Path(__file__).parent / rec_model_config["dict_path"]
 | |
|             )
 | |
|         if params.table_char_dict_path is None:
 | |
|             params.table_char_dict_path = str(
 | |
|                 Path(__file__).parent / table_model_config["dict_path"]
 | |
|             )
 | |
|         if params.layout_dict_path is None:
 | |
|             params.layout_dict_path = str(
 | |
|                 Path(__file__).parent / layout_model_config["dict_path"]
 | |
|             )
 | |
|         if params.formula_char_dict_path is None:
 | |
|             params.formula_char_dict_path = str(
 | |
|                 Path(__file__).parent / formula_model_config["dict_path"]
 | |
|             )
 | |
|         logger.debug(params)
 | |
|         super().__init__(params)
 | |
| 
 | |
|     def __call__(
 | |
|         self,
 | |
|         img,
 | |
|         return_ocr_result_in_table=False,
 | |
|         img_idx=0,
 | |
|         alpha_color=(255, 255, 255),
 | |
|     ):
 | |
|         """
 | |
|         Performs structure analysis on the input image.
 | |
| 
 | |
|         Args:
 | |
|             img (str or numpy.ndarray): The input image to perform structure analysis on.
 | |
|             return_ocr_result_in_table (bool, optional): Whether to return OCR results in table format. Defaults to False.
 | |
|             img_idx (int, optional): The index of the image. Defaults to 0.
 | |
|             alpha_color (tuple, optional): The alpha color for transparent images. Defaults to (255, 255, 255).
 | |
| 
 | |
|         Returns:
 | |
|             list or dict: The structure analysis results.
 | |
| 
 | |
|         """
 | |
|         img, flag_gif, flag_pdf = check_img(img, alpha_color)
 | |
|         if isinstance(img, list) and flag_pdf:
 | |
|             res_list = []
 | |
|             for index, pdf_img in enumerate(img):
 | |
|                 logger.info("processing {}/{} page:".format(index + 1, len(img)))
 | |
|                 res, _ = super().__call__(
 | |
|                     pdf_img, return_ocr_result_in_table, img_idx=index
 | |
|                 )
 | |
|                 res_list.append(res)
 | |
|             return res_list
 | |
|         res, _ = super().__call__(img, return_ocr_result_in_table, img_idx=img_idx)
 | |
|         return res
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     """
 | |
|     Main function for running PaddleOCR or PPStructure.
 | |
| 
 | |
|     This function takes command line arguments, processes the images, and performs OCR or structure analysis based on the specified type.
 | |
| 
 | |
|     Args:
 | |
|         None
 | |
| 
 | |
|     Returns:
 | |
|         None
 | |
|     """
 | |
|     # for cmd
 | |
|     args = parse_args(mMain=True)
 | |
|     logger.info("for usage help, please use `paddleocr --help`")
 | |
|     image_dir = args.image_dir
 | |
|     if is_link(image_dir):
 | |
|         os.remove("tmp.jpg") if os.path.exists("tmp.jpg") else None
 | |
|         download_with_progressbar(image_dir, "tmp.jpg")
 | |
|         image_file_list = ["tmp.jpg"]
 | |
|     else:
 | |
|         image_file_list = get_image_file_list(args.image_dir)
 | |
|     if len(image_file_list) == 0:
 | |
|         logger.error("no images find in {}".format(args.image_dir))
 | |
|         return
 | |
|     if args.type == "ocr":
 | |
|         engine = PaddleOCR(**(args.__dict__))
 | |
|     elif args.type == "structure":
 | |
|         engine = PPStructure(**(args.__dict__))
 | |
|     else:
 | |
|         raise NotImplementedError
 | |
| 
 | |
|     for img_path in image_file_list:
 | |
|         img_name = os.path.basename(img_path).split(".")[0]
 | |
|         logger.info("{}{}{}".format("*" * 10, img_path, "*" * 10))
 | |
|         if args.type == "ocr":
 | |
|             result = engine.ocr(
 | |
|                 img_path,
 | |
|                 det=args.det,
 | |
|                 rec=args.rec,
 | |
|                 cls=args.use_angle_cls,
 | |
|                 bin=args.binarize,
 | |
|                 inv=args.invert,
 | |
|                 alpha_color=args.alphacolor,
 | |
|             )
 | |
|             if result is not None:
 | |
|                 lines = []
 | |
|                 for res in result:
 | |
|                     if res is None:
 | |
|                         logger.warning(f"No text found in image {img_path}")
 | |
|                         continue
 | |
|                     for line in res:
 | |
|                         logger.info(line)
 | |
|                         lines.append(pprint.pformat(line) + "\n")
 | |
|                 if args.savefile:
 | |
|                     if os.path.exists(args.output) is False:
 | |
|                         os.mkdir(args.output)
 | |
|                     outfile = args.output + "/" + img_name + ".txt"
 | |
|                     with open(outfile, "w", encoding="utf-8") as f:
 | |
|                         f.writelines(lines)
 | |
| 
 | |
|         elif args.type == "structure":
 | |
|             img, flag_gif, flag_pdf = check_and_read(img_path)
 | |
|             if not flag_gif and not flag_pdf:
 | |
|                 img = cv2.imread(img_path)
 | |
| 
 | |
|             if args.recovery and args.use_pdf2docx_api and flag_pdf:
 | |
|                 try_import("pdf2docx")
 | |
|                 from pdf2docx.converter import Converter
 | |
| 
 | |
|                 docx_file = os.path.join(args.output, "{}.docx".format(img_name))
 | |
|                 cv = Converter(img_path)
 | |
|                 cv.convert(docx_file)
 | |
|                 cv.close()
 | |
|                 logger.info("docx save to {}".format(docx_file))
 | |
|                 continue
 | |
| 
 | |
|             if not flag_pdf:
 | |
|                 if img is None:
 | |
|                     logger.error("error in loading image:{}".format(img_path))
 | |
|                     continue
 | |
|                 img_paths = [[img_path, img]]
 | |
|             else:
 | |
|                 img_paths = []
 | |
|                 for index, pdf_img in enumerate(img):
 | |
|                     os.makedirs(os.path.join(args.output, img_name), exist_ok=True)
 | |
|                     pdf_img_path = os.path.join(
 | |
|                         args.output, img_name, img_name + "_" + str(index) + ".jpg"
 | |
|                     )
 | |
|                     cv2.imwrite(pdf_img_path, pdf_img)
 | |
|                     img_paths.append([pdf_img_path, pdf_img])
 | |
| 
 | |
|             all_res = []
 | |
|             for index, (new_img_path, img) in enumerate(img_paths):
 | |
|                 logger.info("processing {}/{} page:".format(index + 1, len(img_paths)))
 | |
|                 result = engine(img, img_idx=index)
 | |
|                 save_structure_res(result, args.output, img_name, index)
 | |
| 
 | |
|                 if args.recovery and result != []:
 | |
|                     h, w, _ = img.shape
 | |
|                     result_cp = deepcopy(result)
 | |
|                     result_sorted = sorted_layout_boxes(result_cp, w)
 | |
|                     all_res += result_sorted
 | |
| 
 | |
|             if args.recovery and all_res != []:
 | |
|                 try:
 | |
|                     convert_info_docx(img, all_res, args.output, img_name)
 | |
|                     if args.recovery_to_markdown:
 | |
|                         convert_info_markdown(all_res, args.output, img_name)
 | |
|                 except Exception as ex:
 | |
|                     logger.error(
 | |
|                         "error in layout recovery image:{}, err msg: {}".format(
 | |
|                             img_name, ex
 | |
|                         )
 | |
|                     )
 | |
|                     continue
 | |
| 
 | |
|             for item in all_res:
 | |
|                 item.pop("img")
 | |
|                 item.pop("res")
 | |
|                 logger.info(item)
 | |
|             logger.info("result save to {}".format(args.output))
 |