mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			109 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| import paddle.nn.functional as F
 | |
| from paddle import ParamAttr
 | |
| 
 | |
| 
 | |
| class DBFPN(nn.Layer):
 | |
|     def __init__(self, in_channels, out_channels, **kwargs):
 | |
|         super(DBFPN, self).__init__()
 | |
|         self.out_channels = out_channels
 | |
|         weight_attr = paddle.nn.initializer.KaimingUniform()
 | |
| 
 | |
|         self.in2_conv = nn.Conv2D(
 | |
|             in_channels=in_channels[0],
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=1,
 | |
|             weight_attr=ParamAttr(initializer=weight_attr),
 | |
|             bias_attr=False)
 | |
|         self.in3_conv = nn.Conv2D(
 | |
|             in_channels=in_channels[1],
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=1,
 | |
|             weight_attr=ParamAttr(initializer=weight_attr),
 | |
|             bias_attr=False)
 | |
|         self.in4_conv = nn.Conv2D(
 | |
|             in_channels=in_channels[2],
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=1,
 | |
|             weight_attr=ParamAttr(initializer=weight_attr),
 | |
|             bias_attr=False)
 | |
|         self.in5_conv = nn.Conv2D(
 | |
|             in_channels=in_channels[3],
 | |
|             out_channels=self.out_channels,
 | |
|             kernel_size=1,
 | |
|             weight_attr=ParamAttr(initializer=weight_attr),
 | |
|             bias_attr=False)
 | |
|         self.p5_conv = nn.Conv2D(
 | |
|             in_channels=self.out_channels,
 | |
|             out_channels=self.out_channels // 4,
 | |
|             kernel_size=3,
 | |
|             padding=1,
 | |
|             weight_attr=ParamAttr(initializer=weight_attr),
 | |
|             bias_attr=False)
 | |
|         self.p4_conv = nn.Conv2D(
 | |
|             in_channels=self.out_channels,
 | |
|             out_channels=self.out_channels // 4,
 | |
|             kernel_size=3,
 | |
|             padding=1,
 | |
|             weight_attr=ParamAttr(initializer=weight_attr),
 | |
|             bias_attr=False)
 | |
|         self.p3_conv = nn.Conv2D(
 | |
|             in_channels=self.out_channels,
 | |
|             out_channels=self.out_channels // 4,
 | |
|             kernel_size=3,
 | |
|             padding=1,
 | |
|             weight_attr=ParamAttr(initializer=weight_attr),
 | |
|             bias_attr=False)
 | |
|         self.p2_conv = nn.Conv2D(
 | |
|             in_channels=self.out_channels,
 | |
|             out_channels=self.out_channels // 4,
 | |
|             kernel_size=3,
 | |
|             padding=1,
 | |
|             weight_attr=ParamAttr(initializer=weight_attr),
 | |
|             bias_attr=False)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         c2, c3, c4, c5 = x
 | |
| 
 | |
|         in5 = self.in5_conv(c5)
 | |
|         in4 = self.in4_conv(c4)
 | |
|         in3 = self.in3_conv(c3)
 | |
|         in2 = self.in2_conv(c2)
 | |
| 
 | |
|         out4 = in4 + F.upsample(
 | |
|             in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
 | |
|         out3 = in3 + F.upsample(
 | |
|             out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
 | |
|         out2 = in2 + F.upsample(
 | |
|             out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4
 | |
| 
 | |
|         p5 = self.p5_conv(in5)
 | |
|         p4 = self.p4_conv(out4)
 | |
|         p3 = self.p3_conv(out3)
 | |
|         p2 = self.p2_conv(out2)
 | |
|         p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
 | |
|         p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
 | |
|         p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
 | |
| 
 | |
|         fuse = paddle.concat([p5, p4, p3, p2], axis=1)
 | |
|         return fuse
 | 
