mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-07-23 17:00:15 +00:00

* [cherry-pick] Fix some typos from release/2.4 branch and merge. * rm readme_en.md in deploy/cpp_infer/. * Fix others typos.
141 lines
5.7 KiB
Markdown
141 lines
5.7 KiB
Markdown
# CRNN
|
||
|
||
- [1. 算法简介](#1)
|
||
- [2. 环境配置](#2)
|
||
- [3. 模型训练、评估、预测](#3)
|
||
- [3.1 训练](#3-1)
|
||
- [3.2 评估](#3-2)
|
||
- [3.3 预测](#3-3)
|
||
- [4. 推理部署](#4)
|
||
- [4.1 Python推理](#4-1)
|
||
- [4.2 C++推理](#4-2)
|
||
- [4.3 Serving服务化部署](#4-3)
|
||
- [4.4 更多推理部署](#4-4)
|
||
- [5. FAQ](#5)
|
||
|
||
<a name="1"></a>
|
||
## 1. 算法简介
|
||
|
||
论文信息:
|
||
> [An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition](https://arxiv.org/abs/1507.05717)
|
||
|
||
> Baoguang Shi, Xiang Bai, Cong Yao
|
||
|
||
> IEEE, 2015
|
||
|
||
参考[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
||
|
||
|模型|骨干网络|Avg Accuracy|配置文件|下载链接|
|
||
|---|---|---|---|---|
|
||
|CRNN|Resnet34_vd|81.04%|[configs/rec/rec_r34_vd_none_bilstm_ctc.yml](../../configs/rec/rec_r34_vd_none_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|
||
|CRNN|MobileNetV3|77.95%|[configs/rec/rec_mv3_none_bilstm_ctc.yml](../../configs/rec/rec_mv3_none_bilstm_ctc.yml)|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
||
|
||
|
||
<a name="2"></a>
|
||
## 2. 环境配置
|
||
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。
|
||
|
||
|
||
<a name="3"></a>
|
||
## 3. 模型训练、评估、预测
|
||
|
||
请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。
|
||
|
||
- 训练
|
||
|
||
在完成数据准备后,便可以启动训练,训练命令如下:
|
||
|
||
```
|
||
#单卡训练(训练周期长,不建议)
|
||
python3 tools/train.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml
|
||
|
||
#多卡训练,通过--gpus参数指定卡号
|
||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c rec_r34_vd_none_bilstm_ctc.yml
|
||
|
||
```
|
||
|
||
- 评估
|
||
|
||
```
|
||
# GPU 评估, Global.pretrained_model 为待测权重
|
||
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
|
||
```
|
||
|
||
- 预测:
|
||
|
||
```
|
||
# 预测使用的配置文件必须与训练一致
|
||
python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||
```
|
||
|
||
<a name="4"></a>
|
||
## 4. 推理部署
|
||
|
||
<a name="4-1"></a>
|
||
### 4.1 Python推理
|
||
|
||
首先将 CRNN 文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练的[模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar) 为例,可以使用如下命令进行转换:
|
||
```shell
|
||
python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn
|
||
```
|
||
CRNN 文本识别模型推理,可以执行如下命令:
|
||
|
||
```shell
|
||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt"
|
||
```
|
||
|
||

|
||
|
||
执行命令后,上面图像的识别结果如下:
|
||
|
||
```bash
|
||
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
|
||
```
|
||
|
||
**注意**:由于上述模型是参考[DTRB](https://arxiv.org/abs/1904.01906)文本识别训练和评估流程,与超轻量级中文识别模型训练有两方面不同:
|
||
|
||
- 训练时采用的图像分辨率不同,训练上述模型采用的图像分辨率是[3,32,100],而中文模型训练时,为了保证长文本的识别效果,训练时采用的图像分辨率是[3, 32, 320]。预测推理程序默认的形状参数是训练中文采用的图像分辨率,即[3, 32, 320]。因此,这里推理上述英文模型时,需要通过参数rec_image_shape设置识别图像的形状。
|
||
|
||
- 字符列表,DTRB论文中实验只是针对26个小写英文本母和10个数字进行实验,总共36个字符。所有大小字符都转成了小写字符,不在上面列表的字符都忽略,认为是空格。因此这里没有输入字符字典,而是通过如下命令生成字典.因此在推理时需要设置参数rec_char_dict_path,指定为英文字典"./ppocr/utils/ic15_dict.txt"。
|
||
|
||
```
|
||
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
|
||
dict_character = list(self.character_str)
|
||
```
|
||
|
||
|
||
<a name="4-2"></a>
|
||
### 4.2 C++推理
|
||
|
||
准备好推理模型后,参考[cpp infer](../../deploy/cpp_infer/)教程进行操作即可。
|
||
|
||
<a name="4-3"></a>
|
||
### 4.3 Serving服务化部署
|
||
|
||
准备好推理模型后,参考[pdserving](../../deploy/pdserving/)教程进行Serving服务化部署,包括Python Serving和C++ Serving两种模式。
|
||
|
||
<a name="4-4"></a>
|
||
### 4.4 更多推理部署
|
||
|
||
CRNN模型还支持以下推理部署方式:
|
||
|
||
- Paddle2ONNX推理:准备好推理模型后,参考[paddle2onnx](../../deploy/paddle2onnx/)教程操作。
|
||
|
||
<a name="5"></a>
|
||
## 5. FAQ
|
||
|
||
|
||
## 引用
|
||
|
||
```bibtex
|
||
@ARTICLE{7801919,
|
||
author={Shi, Baoguang and Bai, Xiang and Yao, Cong},
|
||
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
|
||
title={An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition},
|
||
year={2017},
|
||
volume={39},
|
||
number={11},
|
||
pages={2298-2304},
|
||
doi={10.1109/TPAMI.2016.2646371}}
|
||
```
|