mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			137 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| import os
 | |
| import sys
 | |
| 
 | |
| __dir__ = os.path.dirname(os.path.abspath(__file__))
 | |
| sys.path.append(__dir__)
 | |
| sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
 | |
| 
 | |
| os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
 | |
| 
 | |
| import cv2
 | |
| import numpy as np
 | |
| import time
 | |
| 
 | |
| import tools.infer.utility as utility
 | |
| from ppocr.data import create_operators, transform
 | |
| from ppocr.postprocess import build_post_process
 | |
| from ppocr.utils.logging import get_logger
 | |
| from ppocr.utils.utility import get_image_file_list, check_and_read_gif
 | |
| from ppstructure.utility import parse_args
 | |
| 
 | |
| logger = get_logger()
 | |
| 
 | |
| 
 | |
| class TableStructurer(object):
 | |
|     def __init__(self, args):
 | |
|         pre_process_list = [{
 | |
|             'ResizeTableImage': {
 | |
|                 'max_len': args.table_max_len
 | |
|             }
 | |
|         }, {
 | |
|             'NormalizeImage': {
 | |
|                 'std': [0.229, 0.224, 0.225],
 | |
|                 'mean': [0.485, 0.456, 0.406],
 | |
|                 'scale': '1./255.',
 | |
|                 'order': 'hwc'
 | |
|             }
 | |
|         }, {
 | |
|             'PaddingTableImage': None
 | |
|         }, {
 | |
|             'ToCHWImage': None
 | |
|         }, {
 | |
|             'KeepKeys': {
 | |
|                 'keep_keys': ['image']
 | |
|             }
 | |
|         }]
 | |
|         postprocess_params = {
 | |
|             'name': 'TableLabelDecode',
 | |
|             "character_type": args.table_char_type,
 | |
|             "character_dict_path": args.table_char_dict_path,
 | |
|         }
 | |
| 
 | |
|         self.preprocess_op = create_operators(pre_process_list)
 | |
|         self.postprocess_op = build_post_process(postprocess_params)
 | |
|         self.predictor, self.input_tensor, self.output_tensors, self.config = \
 | |
|             utility.create_predictor(args, 'table', logger)
 | |
| 
 | |
|     def __call__(self, img):
 | |
|         ori_im = img.copy()
 | |
|         data = {'image': img}
 | |
|         data = transform(data, self.preprocess_op)
 | |
|         img = data[0]
 | |
|         if img is None:
 | |
|             return None, 0
 | |
|         img = np.expand_dims(img, axis=0)
 | |
|         img = img.copy()
 | |
|         starttime = time.time()
 | |
| 
 | |
|         self.input_tensor.copy_from_cpu(img)
 | |
|         self.predictor.run()
 | |
|         outputs = []
 | |
|         for output_tensor in self.output_tensors:
 | |
|             output = output_tensor.copy_to_cpu()
 | |
|             outputs.append(output)
 | |
| 
 | |
|         preds = {}
 | |
|         preds['structure_probs'] = outputs[1]
 | |
|         preds['loc_preds'] = outputs[0]
 | |
| 
 | |
|         post_result = self.postprocess_op(preds)
 | |
| 
 | |
|         structure_str_list = post_result['structure_str_list']
 | |
|         res_loc = post_result['res_loc']
 | |
|         imgh, imgw = ori_im.shape[0:2]
 | |
|         res_loc_final = []
 | |
|         for rno in range(len(res_loc[0])):
 | |
|             x0, y0, x1, y1 = res_loc[0][rno]
 | |
|             left = max(int(imgw * x0), 0)
 | |
|             top = max(int(imgh * y0), 0)
 | |
|             right = min(int(imgw * x1), imgw - 1)
 | |
|             bottom = min(int(imgh * y1), imgh - 1)
 | |
|             res_loc_final.append([left, top, right, bottom])
 | |
| 
 | |
|         structure_str_list = structure_str_list[0][:-1]
 | |
|         structure_str_list = ['<html>', '<body>', '<table>'] + structure_str_list + ['</table>', '</body>', '</html>']
 | |
| 
 | |
|         elapse = time.time() - starttime
 | |
|         return (structure_str_list, res_loc_final), elapse
 | |
| 
 | |
| 
 | |
| def main(args):
 | |
|     image_file_list = get_image_file_list(args.image_dir)
 | |
|     table_structurer = TableStructurer(args)
 | |
|     count = 0
 | |
|     total_time = 0
 | |
|     for image_file in image_file_list:
 | |
|         img, flag = check_and_read_gif(image_file)
 | |
|         if not flag:
 | |
|             img = cv2.imread(image_file)
 | |
|         if img is None:
 | |
|             logger.info("error in loading image:{}".format(image_file))
 | |
|             continue
 | |
|         structure_res, elapse = table_structurer(img)
 | |
| 
 | |
|         logger.info("result: {}".format(structure_res))
 | |
| 
 | |
|         if count > 0:
 | |
|             total_time += elapse
 | |
|         count += 1
 | |
|         logger.info("Predict time of {}: {}".format(image_file, elapse))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main(parse_args())
 | 
