mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import os
 | |
| import sys
 | |
| import pickle
 | |
| 
 | |
| __dir__ = os.path.dirname(os.path.abspath(__file__))
 | |
| sys.path.append(__dir__)
 | |
| sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
 | |
| 
 | |
| from ppocr.data import build_dataloader
 | |
| from ppocr.modeling.architectures import build_model
 | |
| from ppocr.postprocess import build_post_process
 | |
| from ppocr.utils.save_load import init_model, load_dygraph_params
 | |
| from ppocr.utils.utility import print_dict
 | |
| import tools.program as program
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     global_config = config['Global']
 | |
|     # build dataloader
 | |
|     config['Eval']['dataset']['name'] = config['Train']['dataset']['name']
 | |
|     config['Eval']['dataset']['data_dir'] = config['Train']['dataset'][
 | |
|         'data_dir']
 | |
|     config['Eval']['dataset']['label_file_list'] = config['Train']['dataset'][
 | |
|         'label_file_list']
 | |
|     eval_dataloader = build_dataloader(config, 'Eval', device, logger)
 | |
| 
 | |
|     # build post process
 | |
|     post_process_class = build_post_process(config['PostProcess'],
 | |
|                                             global_config)
 | |
| 
 | |
|     # build model
 | |
|     # for rec algorithm
 | |
|     if hasattr(post_process_class, 'character'):
 | |
|         char_num = len(getattr(post_process_class, 'character'))
 | |
|         config['Architecture']["Head"]['out_channels'] = char_num
 | |
| 
 | |
|     #set return_features = True
 | |
|     config['Architecture']["Head"]["return_feats"] = True
 | |
| 
 | |
|     model = build_model(config['Architecture'])
 | |
| 
 | |
|     best_model_dict = load_dygraph_params(config, model, logger, None)
 | |
|     if len(best_model_dict):
 | |
|         logger.info('metric in ckpt ***************')
 | |
|         for k, v in best_model_dict.items():
 | |
|             logger.info('{}:{}'.format(k, v))
 | |
| 
 | |
|     # get features from train data
 | |
|     char_center = program.get_center(model, eval_dataloader, post_process_class)
 | |
| 
 | |
|     #serialize to disk
 | |
|     with open("train_center.pkl", 'wb') as f:
 | |
|         pickle.dump(char_center, f)
 | |
|     return
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     config, device, logger, vdl_writer = program.preprocess()
 | |
|     main()
 | 
