mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			73 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
import collections
 | 
						|
import numpy as np
 | 
						|
import datetime
 | 
						|
 | 
						|
__all__ = ['TrainingStats', 'Time']
 | 
						|
 | 
						|
 | 
						|
class SmoothedValue(object):
 | 
						|
    """Track a series of values and provide access to smoothed values over a
 | 
						|
    window or the global series average.
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, window_size):
 | 
						|
        self.deque = collections.deque(maxlen=window_size)
 | 
						|
 | 
						|
    def add_value(self, value):
 | 
						|
        self.deque.append(value)
 | 
						|
 | 
						|
    def get_median_value(self):
 | 
						|
        return np.median(self.deque)
 | 
						|
 | 
						|
 | 
						|
def Time():
 | 
						|
    return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
 | 
						|
 | 
						|
 | 
						|
class TrainingStats(object):
 | 
						|
    def __init__(self, window_size, stats_keys):
 | 
						|
        self.window_size = window_size
 | 
						|
        self.smoothed_losses_and_metrics = {
 | 
						|
            key: SmoothedValue(window_size)
 | 
						|
            for key in stats_keys
 | 
						|
        }
 | 
						|
 | 
						|
    def update(self, stats):
 | 
						|
        for k, v in stats.items():
 | 
						|
            if k not in self.smoothed_losses_and_metrics:
 | 
						|
                self.smoothed_losses_and_metrics[k] = SmoothedValue(
 | 
						|
                    self.window_size)
 | 
						|
            self.smoothed_losses_and_metrics[k].add_value(v)
 | 
						|
 | 
						|
    def get(self, extras=None):
 | 
						|
        stats = collections.OrderedDict()
 | 
						|
        if extras:
 | 
						|
            for k, v in extras.items():
 | 
						|
                stats[k] = v
 | 
						|
        for k, v in self.smoothed_losses_and_metrics.items():
 | 
						|
            stats[k] = round(v.get_median_value(), 6)
 | 
						|
 | 
						|
        return stats
 | 
						|
 | 
						|
    def log(self, extras=None):
 | 
						|
        d = self.get(extras)
 | 
						|
        strs = []
 | 
						|
        for k, v in d.items():
 | 
						|
            strs.append('{}: {:x<6f}'.format(k, v))
 | 
						|
        strs = ', '.join(strs)
 | 
						|
        return strs
 |