mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			188 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			188 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import paddle
 | 
						|
from paddle import nn
 | 
						|
import paddle.nn.functional as F
 | 
						|
from paddle import ParamAttr
 | 
						|
 | 
						|
 | 
						|
class ConvBNLayer(nn.Layer):
 | 
						|
    def __init__(self,
 | 
						|
                 in_channels,
 | 
						|
                 out_channels,
 | 
						|
                 kernel_size,
 | 
						|
                 stride,
 | 
						|
                 padding,
 | 
						|
                 groups=1,
 | 
						|
                 if_act=True,
 | 
						|
                 act=None,
 | 
						|
                 name=None):
 | 
						|
        super(ConvBNLayer, self).__init__()
 | 
						|
        self.if_act = if_act
 | 
						|
        self.act = act
 | 
						|
        self.conv = nn.Conv2D(
 | 
						|
            in_channels=in_channels,
 | 
						|
            out_channels=out_channels,
 | 
						|
            kernel_size=kernel_size,
 | 
						|
            stride=stride,
 | 
						|
            padding=padding,
 | 
						|
            groups=groups,
 | 
						|
            weight_attr=ParamAttr(name=name + '_weights'),
 | 
						|
            bias_attr=False)
 | 
						|
 | 
						|
        self.bn = nn.BatchNorm(
 | 
						|
            num_channels=out_channels,
 | 
						|
            act=act,
 | 
						|
            param_attr=ParamAttr(name="bn_" + name + "_scale"),
 | 
						|
            bias_attr=ParamAttr(name="bn_" + name + "_offset"),
 | 
						|
            moving_mean_name="bn_" + name + "_mean",
 | 
						|
            moving_variance_name="bn_" + name + "_variance")
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x = self.conv(x)
 | 
						|
        x = self.bn(x)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class DeConvBNLayer(nn.Layer):
 | 
						|
    def __init__(self,
 | 
						|
                 in_channels,
 | 
						|
                 out_channels,
 | 
						|
                 kernel_size,
 | 
						|
                 stride,
 | 
						|
                 padding,
 | 
						|
                 groups=1,
 | 
						|
                 if_act=True,
 | 
						|
                 act=None,
 | 
						|
                 name=None):
 | 
						|
        super(DeConvBNLayer, self).__init__()
 | 
						|
        self.if_act = if_act
 | 
						|
        self.act = act
 | 
						|
        self.deconv = nn.Conv2DTranspose(
 | 
						|
            in_channels=in_channels,
 | 
						|
            out_channels=out_channels,
 | 
						|
            kernel_size=kernel_size,
 | 
						|
            stride=stride,
 | 
						|
            padding=padding,
 | 
						|
            groups=groups,
 | 
						|
            weight_attr=ParamAttr(name=name + '_weights'),
 | 
						|
            bias_attr=False)
 | 
						|
        self.bn = nn.BatchNorm(
 | 
						|
            num_channels=out_channels,
 | 
						|
            act=act,
 | 
						|
            param_attr=ParamAttr(name="bn_" + name + "_scale"),
 | 
						|
            bias_attr=ParamAttr(name="bn_" + name + "_offset"),
 | 
						|
            moving_mean_name="bn_" + name + "_mean",
 | 
						|
            moving_variance_name="bn_" + name + "_variance")
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x = self.deconv(x)
 | 
						|
        x = self.bn(x)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class EASTFPN(nn.Layer):
 | 
						|
    def __init__(self, in_channels, model_name, **kwargs):
 | 
						|
        super(EASTFPN, self).__init__()
 | 
						|
        self.model_name = model_name
 | 
						|
        if self.model_name == "large":
 | 
						|
            self.out_channels = 128
 | 
						|
        else:
 | 
						|
            self.out_channels = 64
 | 
						|
        self.in_channels = in_channels[::-1]
 | 
						|
        self.h1_conv = ConvBNLayer(
 | 
						|
            in_channels=self.out_channels+self.in_channels[1],
 | 
						|
            out_channels=self.out_channels,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            padding=1,
 | 
						|
            if_act=True,
 | 
						|
            act='relu',
 | 
						|
            name="unet_h_1")
 | 
						|
        self.h2_conv = ConvBNLayer(
 | 
						|
            in_channels=self.out_channels+self.in_channels[2],
 | 
						|
            out_channels=self.out_channels,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            padding=1,
 | 
						|
            if_act=True,
 | 
						|
            act='relu',
 | 
						|
            name="unet_h_2")
 | 
						|
        self.h3_conv = ConvBNLayer(
 | 
						|
            in_channels=self.out_channels+self.in_channels[3],
 | 
						|
            out_channels=self.out_channels,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            padding=1,
 | 
						|
            if_act=True,
 | 
						|
            act='relu',
 | 
						|
            name="unet_h_3")
 | 
						|
        self.g0_deconv = DeConvBNLayer(
 | 
						|
            in_channels=self.in_channels[0],
 | 
						|
            out_channels=self.out_channels,
 | 
						|
            kernel_size=4,
 | 
						|
            stride=2,
 | 
						|
            padding=1,
 | 
						|
            if_act=True,
 | 
						|
            act='relu',
 | 
						|
            name="unet_g_0")
 | 
						|
        self.g1_deconv = DeConvBNLayer(
 | 
						|
            in_channels=self.out_channels,
 | 
						|
            out_channels=self.out_channels,
 | 
						|
            kernel_size=4,
 | 
						|
            stride=2,
 | 
						|
            padding=1,
 | 
						|
            if_act=True,
 | 
						|
            act='relu',
 | 
						|
            name="unet_g_1")
 | 
						|
        self.g2_deconv = DeConvBNLayer(
 | 
						|
            in_channels=self.out_channels,
 | 
						|
            out_channels=self.out_channels,
 | 
						|
            kernel_size=4,
 | 
						|
            stride=2,
 | 
						|
            padding=1,
 | 
						|
            if_act=True,
 | 
						|
            act='relu',
 | 
						|
            name="unet_g_2")
 | 
						|
        self.g3_conv = ConvBNLayer(
 | 
						|
            in_channels=self.out_channels,
 | 
						|
            out_channels=self.out_channels,
 | 
						|
            kernel_size=3,
 | 
						|
            stride=1,
 | 
						|
            padding=1,
 | 
						|
            if_act=True,
 | 
						|
            act='relu',
 | 
						|
            name="unet_g_3")
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        f = x[::-1]
 | 
						|
 | 
						|
        h = f[0]
 | 
						|
        g = self.g0_deconv(h)
 | 
						|
        h = paddle.concat([g, f[1]], axis=1)
 | 
						|
        h = self.h1_conv(h)
 | 
						|
        g = self.g1_deconv(h)
 | 
						|
        h = paddle.concat([g, f[2]], axis=1)
 | 
						|
        h = self.h2_conv(h)
 | 
						|
        g = self.g2_deconv(h)
 | 
						|
        h = paddle.concat([g, f[3]], axis=1)
 | 
						|
        h = self.h3_conv(h)
 | 
						|
        g = self.g3_conv(h)
 | 
						|
 | 
						|
        return g |