mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 03:39:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			221 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
"""
 | 
						|
This code is refered from:
 | 
						|
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
 | 
						|
"""
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import cv2
 | 
						|
import paddle
 | 
						|
from shapely.geometry import Polygon
 | 
						|
import pyclipper
 | 
						|
 | 
						|
 | 
						|
class DBPostProcess(object):
 | 
						|
    """
 | 
						|
    The post process for Differentiable Binarization (DB).
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self,
 | 
						|
                 thresh=0.3,
 | 
						|
                 box_thresh=0.7,
 | 
						|
                 max_candidates=1000,
 | 
						|
                 unclip_ratio=2.0,
 | 
						|
                 use_dilation=False,
 | 
						|
                 score_mode="fast",
 | 
						|
                 **kwargs):
 | 
						|
        self.thresh = thresh
 | 
						|
        self.box_thresh = box_thresh
 | 
						|
        self.max_candidates = max_candidates
 | 
						|
        self.unclip_ratio = unclip_ratio
 | 
						|
        self.min_size = 3
 | 
						|
        self.score_mode = score_mode
 | 
						|
        assert score_mode in [
 | 
						|
            "slow", "fast"
 | 
						|
        ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
 | 
						|
 | 
						|
        self.dilation_kernel = None if not use_dilation else np.array(
 | 
						|
            [[1, 1], [1, 1]])
 | 
						|
 | 
						|
    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
 | 
						|
        '''
 | 
						|
        _bitmap: single map with shape (1, H, W),
 | 
						|
                whose values are binarized as {0, 1}
 | 
						|
        '''
 | 
						|
 | 
						|
        bitmap = _bitmap
 | 
						|
        height, width = bitmap.shape
 | 
						|
 | 
						|
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
 | 
						|
                                cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
        if len(outs) == 3:
 | 
						|
            img, contours, _ = outs[0], outs[1], outs[2]
 | 
						|
        elif len(outs) == 2:
 | 
						|
            contours, _ = outs[0], outs[1]
 | 
						|
 | 
						|
        num_contours = min(len(contours), self.max_candidates)
 | 
						|
 | 
						|
        boxes = []
 | 
						|
        scores = []
 | 
						|
        for index in range(num_contours):
 | 
						|
            contour = contours[index]
 | 
						|
            points, sside = self.get_mini_boxes(contour)
 | 
						|
            if sside < self.min_size:
 | 
						|
                continue
 | 
						|
            points = np.array(points)
 | 
						|
            if self.score_mode == "fast":
 | 
						|
                score = self.box_score_fast(pred, points.reshape(-1, 2))
 | 
						|
            else:
 | 
						|
                score = self.box_score_slow(pred, contour)
 | 
						|
            if self.box_thresh > score:
 | 
						|
                continue
 | 
						|
 | 
						|
            box = self.unclip(points).reshape(-1, 1, 2)
 | 
						|
            box, sside = self.get_mini_boxes(box)
 | 
						|
            if sside < self.min_size + 2:
 | 
						|
                continue
 | 
						|
            box = np.array(box)
 | 
						|
 | 
						|
            box[:, 0] = np.clip(
 | 
						|
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
 | 
						|
            box[:, 1] = np.clip(
 | 
						|
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
 | 
						|
            boxes.append(box.astype(np.int16))
 | 
						|
            scores.append(score)
 | 
						|
        return np.array(boxes, dtype=np.int16), scores
 | 
						|
 | 
						|
    def unclip(self, box):
 | 
						|
        unclip_ratio = self.unclip_ratio
 | 
						|
        poly = Polygon(box)
 | 
						|
        distance = poly.area * unclip_ratio / poly.length
 | 
						|
        offset = pyclipper.PyclipperOffset()
 | 
						|
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
 | 
						|
        expanded = np.array(offset.Execute(distance))
 | 
						|
        return expanded
 | 
						|
 | 
						|
    def get_mini_boxes(self, contour):
 | 
						|
        bounding_box = cv2.minAreaRect(contour)
 | 
						|
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
 | 
						|
 | 
						|
        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
 | 
						|
        if points[1][1] > points[0][1]:
 | 
						|
            index_1 = 0
 | 
						|
            index_4 = 1
 | 
						|
        else:
 | 
						|
            index_1 = 1
 | 
						|
            index_4 = 0
 | 
						|
        if points[3][1] > points[2][1]:
 | 
						|
            index_2 = 2
 | 
						|
            index_3 = 3
 | 
						|
        else:
 | 
						|
            index_2 = 3
 | 
						|
            index_3 = 2
 | 
						|
 | 
						|
        box = [
 | 
						|
            points[index_1], points[index_2], points[index_3], points[index_4]
 | 
						|
        ]
 | 
						|
        return box, min(bounding_box[1])
 | 
						|
 | 
						|
    def box_score_fast(self, bitmap, _box):
 | 
						|
        '''
 | 
						|
        box_score_fast: use bbox mean score as the mean score
 | 
						|
        '''
 | 
						|
        h, w = bitmap.shape[:2]
 | 
						|
        box = _box.copy()
 | 
						|
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
 | 
						|
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
 | 
						|
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
 | 
						|
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
 | 
						|
 | 
						|
        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
 | 
						|
        box[:, 0] = box[:, 0] - xmin
 | 
						|
        box[:, 1] = box[:, 1] - ymin
 | 
						|
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
 | 
						|
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
 | 
						|
 | 
						|
    def box_score_slow(self, bitmap, contour):
 | 
						|
        '''
 | 
						|
        box_score_slow: use polyon mean score as the mean score
 | 
						|
        '''
 | 
						|
        h, w = bitmap.shape[:2]
 | 
						|
        contour = contour.copy()
 | 
						|
        contour = np.reshape(contour, (-1, 2))
 | 
						|
 | 
						|
        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
 | 
						|
        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
 | 
						|
        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
 | 
						|
        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
 | 
						|
 | 
						|
        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
 | 
						|
 | 
						|
        contour[:, 0] = contour[:, 0] - xmin
 | 
						|
        contour[:, 1] = contour[:, 1] - ymin
 | 
						|
 | 
						|
        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
 | 
						|
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
 | 
						|
 | 
						|
    def __call__(self, outs_dict, shape_list):
 | 
						|
        pred = outs_dict['maps']
 | 
						|
        if isinstance(pred, paddle.Tensor):
 | 
						|
            pred = pred.numpy()
 | 
						|
        pred = pred[:, 0, :, :]
 | 
						|
        segmentation = pred > self.thresh
 | 
						|
 | 
						|
        boxes_batch = []
 | 
						|
        for batch_index in range(pred.shape[0]):
 | 
						|
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
 | 
						|
            if self.dilation_kernel is not None:
 | 
						|
                mask = cv2.dilate(
 | 
						|
                    np.array(segmentation[batch_index]).astype(np.uint8),
 | 
						|
                    self.dilation_kernel)
 | 
						|
            else:
 | 
						|
                mask = segmentation[batch_index]
 | 
						|
            boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
 | 
						|
                                                   src_w, src_h)
 | 
						|
 | 
						|
            boxes_batch.append({'points': boxes})
 | 
						|
        return boxes_batch
 | 
						|
 | 
						|
 | 
						|
class DistillationDBPostProcess(object):
 | 
						|
    def __init__(self,
 | 
						|
                 model_name=["student"],
 | 
						|
                 key=None,
 | 
						|
                 thresh=0.3,
 | 
						|
                 box_thresh=0.6,
 | 
						|
                 max_candidates=1000,
 | 
						|
                 unclip_ratio=1.5,
 | 
						|
                 use_dilation=False,
 | 
						|
                 score_mode="fast",
 | 
						|
                 **kwargs):
 | 
						|
        self.model_name = model_name
 | 
						|
        self.key = key
 | 
						|
        self.post_process = DBPostProcess(
 | 
						|
            thresh=thresh,
 | 
						|
            box_thresh=box_thresh,
 | 
						|
            max_candidates=max_candidates,
 | 
						|
            unclip_ratio=unclip_ratio,
 | 
						|
            use_dilation=use_dilation,
 | 
						|
            score_mode=score_mode)
 | 
						|
 | 
						|
    def __call__(self, predicts, shape_list):
 | 
						|
        results = {}
 | 
						|
        for k in self.model_name:
 | 
						|
            results[k] = self.post_process(predicts[k], shape_list=shape_list)
 | 
						|
        return results
 |