mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			72 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| # The code is refer from: https://github.com/open-mmlab/mmocr/blob/main/mmocr/core/evaluation/kie_metric.py
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| import paddle
 | |
| 
 | |
| __all__ = ['KIEMetric']
 | |
| 
 | |
| 
 | |
| class KIEMetric(object):
 | |
|     def __init__(self, main_indicator='hmean', **kwargs):
 | |
|         self.main_indicator = main_indicator
 | |
|         self.reset()
 | |
|         self.node = []
 | |
|         self.gt = []
 | |
| 
 | |
|     def __call__(self, preds, batch, **kwargs):
 | |
|         nodes, _ = preds
 | |
|         gts, tag = batch[4].squeeze(0), batch[5].tolist()[0]
 | |
|         gts = gts[:tag[0], :1].reshape([-1])
 | |
|         self.node.append(nodes.numpy())
 | |
|         self.gt.append(gts)
 | |
|         # result = self.compute_f1_score(nodes, gts)
 | |
|         # self.results.append(result)
 | |
| 
 | |
|     def compute_f1_score(self, preds, gts):
 | |
|         ignores = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25]
 | |
|         C = preds.shape[1]
 | |
|         classes = np.array(sorted(set(range(C)) - set(ignores)))
 | |
|         hist = np.bincount(
 | |
|             (gts * C).astype('int64') + preds.argmax(1), minlength=C
 | |
|             **2).reshape([C, C]).astype('float32')
 | |
|         diag = np.diag(hist)
 | |
|         recalls = diag / hist.sum(1).clip(min=1)
 | |
|         precisions = diag / hist.sum(0).clip(min=1)
 | |
|         f1 = 2 * recalls * precisions / (recalls + precisions).clip(min=1e-8)
 | |
|         return f1[classes]
 | |
| 
 | |
|     def combine_results(self, results):
 | |
|         node = np.concatenate(self.node, 0)
 | |
|         gts = np.concatenate(self.gt, 0)
 | |
|         results = self.compute_f1_score(node, gts)
 | |
|         data = {'hmean': results.mean()}
 | |
|         return data
 | |
| 
 | |
|     def get_metric(self):
 | |
| 
 | |
|         metircs = self.combine_results(self.results)
 | |
|         self.reset()
 | |
|         return metircs
 | |
| 
 | |
|     def reset(self):
 | |
|         self.results = []  # clear results
 | |
|         self.node = []
 | |
|         self.gt = []
 | 
