mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-03 19:29:18 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			134 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
[English](README.md) | 简体中文
 | 
						||
 | 
						||
# 版面分析使用说明
 | 
						||
 | 
						||
- [1. 安装whl包](#1)
 | 
						||
- [2. 使用](#2)
 | 
						||
- [3. 后处理](#3)
 | 
						||
- [4. 指标](#4)
 | 
						||
- [5. 训练版面分析模型](#5)
 | 
						||
 | 
						||
 | 
						||
<a name="1"></a>
 | 
						||
## 1.  安装whl包
 | 
						||
```bash
 | 
						||
pip install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
 | 
						||
```
 | 
						||
 | 
						||
<a name="2"></a>
 | 
						||
## 2. 使用
 | 
						||
 | 
						||
使用layoutparser识别给定文档的布局:
 | 
						||
 | 
						||
```python
 | 
						||
import cv2
 | 
						||
import layoutparser as lp
 | 
						||
image = cv2.imread("ppstructure/docs/table/layout.jpg")
 | 
						||
image = image[..., ::-1]
 | 
						||
 | 
						||
# 加载模型
 | 
						||
model = lp.PaddleDetectionLayoutModel(config_path="lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config",
 | 
						||
                                threshold=0.5,
 | 
						||
                                label_map={0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"},
 | 
						||
                                enforce_cpu=False,
 | 
						||
                                enable_mkldnn=True)
 | 
						||
# 检测
 | 
						||
layout = model.detect(image)
 | 
						||
 | 
						||
# 显示结果
 | 
						||
show_img = lp.draw_box(image, layout, box_width=3, show_element_type=True)
 | 
						||
show_img.show()
 | 
						||
```
 | 
						||
 | 
						||
下图展示了结果,不同颜色的检测框表示不同的类别,并通过`show_element_type`在框的左上角显示具体类别:
 | 
						||
 | 
						||
<div align="center">
 | 
						||
<img src="../docs/table/result_all.jpg"  width = "600" />
 | 
						||
</div>
 | 
						||
 | 
						||
`PaddleDetectionLayoutModel`函数参数说明如下:
 | 
						||
 | 
						||
|      参数      |            含义             |   默认值    |                             备注                             |
 | 
						||
| :------------: | :-------------------------: | :---------: | :----------------------------------------------------------: |
 | 
						||
|  config_path   |        模型配置路径         |    None     | 指定config_path会自动下载模型(仅第一次,之后模型存在,不会再下载) |
 | 
						||
|   model_path   |          模型路径           |    None     | 本地模型路径,config_path和model_path必须设置一个,不能同时为None |
 | 
						||
|   threshold    |       预测得分的阈值        |     0.5     |                              \                               |
 | 
						||
|  input_shape   |     reshape之后图片尺寸     | [3,640,640] |                              \                               |
 | 
						||
|   batch_size   |       测试batch size        |      1      |                              \                               |
 | 
						||
|   label_map    |         类别映射表          |    None     | 设置config_path时,可以为None,根据数据集名称自动获取label_map,设置model_path时需要手动指定 |
 | 
						||
|  enforce_cpu   |     代码是否使用CPU运行     |    False    |         设置为False表示使用GPU,True表示强制使用CPU          |
 | 
						||
| enforce_mkldnn | CPU预测中是否开启MKLDNN加速 |    True     |                              \                               |
 | 
						||
|   thread_num   |        设置CPU线程数        |     10      |                              \                               |
 | 
						||
 | 
						||
目前支持以下几种模型配置和label map,您可以通过修改 `--config_path`和 `--label_map`使用这些模型,从而检测不同类型的内容:
 | 
						||
 | 
						||
| dataset                                                      | config_path                                                  | label_map                                                 |
 | 
						||
| ------------------------------------------------------------ | ------------------------------------------------------------ | --------------------------------------------------------- |
 | 
						||
| [TableBank](https://doc-analysis.github.io/tablebank-page/index.html) word | lp://TableBank/ppyolov2_r50vd_dcn_365e_tableBank_word/config | {0:"Table"}                                               |
 | 
						||
| TableBank latex                                              | lp://TableBank/ppyolov2_r50vd_dcn_365e_tableBank_latex/config | {0:"Table"}                                               |
 | 
						||
| [PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet)        | lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config      | {0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"} |
 | 
						||
 | 
						||
* TableBank word和TableBank latex分别在word文档、latex文档数据集训练;
 | 
						||
* 下载的TableBank数据集里同时包含word和latex。
 | 
						||
 | 
						||
<a name="3"></a>
 | 
						||
## 3. 后处理
 | 
						||
 | 
						||
版面分析检测包含多个类别,如果只想获取指定类别(如"Text"类别)的检测框、可以使用下述代码:
 | 
						||
 | 
						||
```python
 | 
						||
# 接上面代码
 | 
						||
# 首先过滤特定文本类型的区域
 | 
						||
text_blocks = lp.Layout([b for b in layout if b.type=='Text'])
 | 
						||
figure_blocks = lp.Layout([b for b in layout if b.type=='Figure'])
 | 
						||
 | 
						||
# 因为在图像区域内可能检测到文本区域,所以只需要删除它们
 | 
						||
text_blocks = lp.Layout([b for b in text_blocks \
 | 
						||
                   if not any(b.is_in(b_fig) for b_fig in figure_blocks)])
 | 
						||
 | 
						||
# 对文本区域排序并分配id
 | 
						||
h, w = image.shape[:2]
 | 
						||
 | 
						||
left_interval = lp.Interval(0, w/2*1.05, axis='x').put_on_canvas(image)
 | 
						||
 | 
						||
left_blocks = text_blocks.filter_by(left_interval, center=True)
 | 
						||
left_blocks.sort(key = lambda b:b.coordinates[1])
 | 
						||
 | 
						||
right_blocks = [b for b in text_blocks if b not in left_blocks]
 | 
						||
right_blocks.sort(key = lambda b:b.coordinates[1])
 | 
						||
 | 
						||
# 最终合并两个列表,并按顺序添加索引
 | 
						||
text_blocks = lp.Layout([b.set(id = idx) for idx, b in enumerate(left_blocks + right_blocks)])
 | 
						||
 | 
						||
# 显示结果
 | 
						||
show_img = lp.draw_box(image, text_blocks,
 | 
						||
            box_width=3,
 | 
						||
            show_element_id=True)
 | 
						||
show_img.show()
 | 
						||
```
 | 
						||
 | 
						||
显示只有"Text"类别的结果:
 | 
						||
 | 
						||
<div align="center">
 | 
						||
<img src="../docs/table/result_text.jpg"  width = "600" />
 | 
						||
</div>
 | 
						||
 | 
						||
<a name="4"></a>
 | 
						||
## 4. 指标
 | 
						||
 | 
						||
| Dataset   | mAP  | CPU time cost | GPU time cost |
 | 
						||
| --------- | ---- | ------------- | ------------- |
 | 
						||
| PubLayNet | 93.6 | 1713.7ms      | 66.6ms        |
 | 
						||
| TableBank | 96.2 | 1968.4ms      | 65.1ms        |
 | 
						||
 | 
						||
**Envrionment:**
 | 
						||
 | 
						||
    **CPU:**  Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz,24core
 | 
						||
 | 
						||
    **GPU:**  a single NVIDIA Tesla P40
 | 
						||
 | 
						||
<a name="5"></a>
 | 
						||
## 5. 训练版面分析模型
 | 
						||
 | 
						||
上述模型基于[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) 训练,如果您想训练自己的版面分析模型,请参考:[train_layoutparser_model](train_layoutparser_model_ch.md)
 |