mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-03 19:29:18 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			56 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			56 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
import copy
 | 
						|
 | 
						|
__all__ = ['build_optimizer']
 | 
						|
 | 
						|
 | 
						|
def build_lr_scheduler(lr_config, epochs, step_each_epoch):
 | 
						|
    from . import learning_rate
 | 
						|
    lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch})
 | 
						|
    if 'name' in lr_config:
 | 
						|
        lr_name = lr_config.pop('name')
 | 
						|
        lr = getattr(learning_rate, lr_name)(**lr_config)()
 | 
						|
    else:
 | 
						|
        lr = lr_config['learning_rate']
 | 
						|
    return lr
 | 
						|
 | 
						|
 | 
						|
def build_optimizer(config, epochs, step_each_epoch, parameters):
 | 
						|
    from . import regularizer, optimizer
 | 
						|
    config = copy.deepcopy(config)
 | 
						|
    # step1 build lr
 | 
						|
    lr = build_lr_scheduler(config.pop('lr'), epochs, step_each_epoch)
 | 
						|
 | 
						|
    # step2 build regularization
 | 
						|
    if 'regularizer' in config and config['regularizer'] is not None:
 | 
						|
        reg_config = config.pop('regularizer')
 | 
						|
        reg_name = reg_config.pop('name') + 'Decay'
 | 
						|
        reg = getattr(regularizer, reg_name)(**reg_config)()
 | 
						|
    else:
 | 
						|
        reg = None
 | 
						|
 | 
						|
    # step3 build optimizer
 | 
						|
    optim_name = config.pop('name')
 | 
						|
    optim = getattr(optimizer, optim_name)(learning_rate=lr,
 | 
						|
                                           weight_decay=reg,
 | 
						|
                                           **config)
 | 
						|
    return optim(parameters), lr
 |