mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	 7054013004
			
		
	
	
		7054013004
		
			
		
	
	
	
	
		
			
			* add sr model * update for eval * submit sr * polish code * polish code * polish code * update sr model * update doc * update doc * update doc * fix typo * format code * update metric * fix export
		
			
				
	
	
		
			177 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| import numpy as np
 | |
| import os
 | |
| from paddle.io import Dataset
 | |
| import lmdb
 | |
| import cv2
 | |
| import string
 | |
| import six
 | |
| from PIL import Image
 | |
| 
 | |
| from .imaug import transform, create_operators
 | |
| 
 | |
| 
 | |
| class LMDBDataSet(Dataset):
 | |
|     def __init__(self, config, mode, logger, seed=None):
 | |
|         super(LMDBDataSet, self).__init__()
 | |
| 
 | |
|         global_config = config['Global']
 | |
|         dataset_config = config[mode]['dataset']
 | |
|         loader_config = config[mode]['loader']
 | |
|         batch_size = loader_config['batch_size_per_card']
 | |
|         data_dir = dataset_config['data_dir']
 | |
|         self.do_shuffle = loader_config['shuffle']
 | |
| 
 | |
|         self.lmdb_sets = self.load_hierarchical_lmdb_dataset(data_dir)
 | |
|         logger.info("Initialize indexs of datasets:%s" % data_dir)
 | |
|         self.data_idx_order_list = self.dataset_traversal()
 | |
|         if self.do_shuffle:
 | |
|             np.random.shuffle(self.data_idx_order_list)
 | |
|         self.ops = create_operators(dataset_config['transforms'], global_config)
 | |
| 
 | |
|         ratio_list = dataset_config.get("ratio_list", [1.0])
 | |
|         self.need_reset = True in [x < 1 for x in ratio_list]
 | |
| 
 | |
|     def load_hierarchical_lmdb_dataset(self, data_dir):
 | |
|         lmdb_sets = {}
 | |
|         dataset_idx = 0
 | |
|         for dirpath, dirnames, filenames in os.walk(data_dir + '/'):
 | |
|             if not dirnames:
 | |
|                 env = lmdb.open(
 | |
|                     dirpath,
 | |
|                     max_readers=32,
 | |
|                     readonly=True,
 | |
|                     lock=False,
 | |
|                     readahead=False,
 | |
|                     meminit=False)
 | |
|                 txn = env.begin(write=False)
 | |
|                 num_samples = int(txn.get('num-samples'.encode()))
 | |
|                 lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
 | |
|                     "txn":txn, "num_samples":num_samples}
 | |
|                 dataset_idx += 1
 | |
|         return lmdb_sets
 | |
| 
 | |
|     def dataset_traversal(self):
 | |
|         lmdb_num = len(self.lmdb_sets)
 | |
|         total_sample_num = 0
 | |
|         for lno in range(lmdb_num):
 | |
|             total_sample_num += self.lmdb_sets[lno]['num_samples']
 | |
|         data_idx_order_list = np.zeros((total_sample_num, 2))
 | |
|         beg_idx = 0
 | |
|         for lno in range(lmdb_num):
 | |
|             tmp_sample_num = self.lmdb_sets[lno]['num_samples']
 | |
|             end_idx = beg_idx + tmp_sample_num
 | |
|             data_idx_order_list[beg_idx:end_idx, 0] = lno
 | |
|             data_idx_order_list[beg_idx:end_idx, 1] \
 | |
|                 = list(range(tmp_sample_num))
 | |
|             data_idx_order_list[beg_idx:end_idx, 1] += 1
 | |
|             beg_idx = beg_idx + tmp_sample_num
 | |
|         return data_idx_order_list
 | |
| 
 | |
|     def get_img_data(self, value):
 | |
|         """get_img_data"""
 | |
|         if not value:
 | |
|             return None
 | |
|         imgdata = np.frombuffer(value, dtype='uint8')
 | |
|         if imgdata is None:
 | |
|             return None
 | |
|         imgori = cv2.imdecode(imgdata, 1)
 | |
|         if imgori is None:
 | |
|             return None
 | |
|         return imgori
 | |
| 
 | |
|     def get_lmdb_sample_info(self, txn, index):
 | |
|         label_key = 'label-%09d'.encode() % index
 | |
|         label = txn.get(label_key)
 | |
|         if label is None:
 | |
|             return None
 | |
|         label = label.decode('utf-8')
 | |
|         img_key = 'image-%09d'.encode() % index
 | |
|         imgbuf = txn.get(img_key)
 | |
|         return imgbuf, label
 | |
| 
 | |
|     def __getitem__(self, idx):
 | |
|         lmdb_idx, file_idx = self.data_idx_order_list[idx]
 | |
|         lmdb_idx = int(lmdb_idx)
 | |
|         file_idx = int(file_idx)
 | |
|         sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'],
 | |
|                                                 file_idx)
 | |
|         if sample_info is None:
 | |
|             return self.__getitem__(np.random.randint(self.__len__()))
 | |
|         img, label = sample_info
 | |
|         data = {'image': img, 'label': label}
 | |
|         outs = transform(data, self.ops)
 | |
|         if outs is None:
 | |
|             return self.__getitem__(np.random.randint(self.__len__()))
 | |
|         return outs
 | |
| 
 | |
|     def __len__(self):
 | |
|         return self.data_idx_order_list.shape[0]
 | |
| 
 | |
| 
 | |
| class LMDBDataSetSR(LMDBDataSet):
 | |
|     def buf2PIL(self, txn, key, type='RGB'):
 | |
|         imgbuf = txn.get(key)
 | |
|         buf = six.BytesIO()
 | |
|         buf.write(imgbuf)
 | |
|         buf.seek(0)
 | |
|         im = Image.open(buf).convert(type)
 | |
|         return im
 | |
| 
 | |
|     def str_filt(self, str_, voc_type):
 | |
|         alpha_dict = {
 | |
|             'digit': string.digits,
 | |
|             'lower': string.digits + string.ascii_lowercase,
 | |
|             'upper': string.digits + string.ascii_letters,
 | |
|             'all': string.digits + string.ascii_letters + string.punctuation
 | |
|         }
 | |
|         if voc_type == 'lower':
 | |
|             str_ = str_.lower()
 | |
|         for char in str_:
 | |
|             if char not in alpha_dict[voc_type]:
 | |
|                 str_ = str_.replace(char, '')
 | |
|         return str_
 | |
| 
 | |
|     def get_lmdb_sample_info(self, txn, index):
 | |
|         self.voc_type = 'upper'
 | |
|         self.max_len = 100
 | |
|         self.test = False
 | |
|         label_key = b'label-%09d' % index
 | |
|         word = str(txn.get(label_key).decode())
 | |
|         img_HR_key = b'image_hr-%09d' % index  # 128*32
 | |
|         img_lr_key = b'image_lr-%09d' % index  # 64*16
 | |
|         try:
 | |
|             img_HR = self.buf2PIL(txn, img_HR_key, 'RGB')
 | |
|             img_lr = self.buf2PIL(txn, img_lr_key, 'RGB')
 | |
|         except IOError or len(word) > self.max_len:
 | |
|             return self[index + 1]
 | |
|         label_str = self.str_filt(word, self.voc_type)
 | |
|         return img_HR, img_lr, label_str
 | |
| 
 | |
|     def __getitem__(self, idx):
 | |
|         lmdb_idx, file_idx = self.data_idx_order_list[idx]
 | |
|         lmdb_idx = int(lmdb_idx)
 | |
|         file_idx = int(file_idx)
 | |
|         sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'],
 | |
|                                                 file_idx)
 | |
|         if sample_info is None:
 | |
|             return self.__getitem__(np.random.randint(self.__len__()))
 | |
|         img_HR, img_lr, label_str = sample_info
 | |
|         data = {'image_hr': img_HR, 'image_lr': img_lr, 'label': label_str}
 | |
|         outs = transform(data, self.ops)
 | |
|         if outs is None:
 | |
|             return self.__getitem__(np.random.randint(self.__len__()))
 | |
|         return outs
 |