mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-30 17:29:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			69 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import copy
 | |
| import importlib
 | |
| 
 | |
| from paddle.jit import to_static
 | |
| from paddle.static import InputSpec
 | |
| 
 | |
| from .base_model import BaseModel
 | |
| from .distillation_model import DistillationModel
 | |
| 
 | |
| __all__ = ["build_model", "apply_to_static"]
 | |
| 
 | |
| 
 | |
| def build_model(config):
 | |
|     config = copy.deepcopy(config)
 | |
|     if not "name" in config:
 | |
|         arch = BaseModel(config)
 | |
|     else:
 | |
|         name = config.pop("name")
 | |
|         mod = importlib.import_module(__name__)
 | |
|         arch = getattr(mod, name)(config)
 | |
|     return arch
 | |
| 
 | |
| 
 | |
| def apply_to_static(model, config, logger):
 | |
|     if config["Global"].get("to_static", False) is not True:
 | |
|         return model
 | |
|     assert "image_shape" in config[
 | |
|         "Global"], "image_shape must be assigned for static training mode..."
 | |
|     supported_list = ["DB", "SVTR"]
 | |
|     if config["Architecture"]["algorithm"] in ["Distillation"]:
 | |
|         algo = list(config["Architecture"]["Models"].values())[0]["algorithm"]
 | |
|     else:
 | |
|         algo = config["Architecture"]["algorithm"]
 | |
|     assert algo in supported_list, f"algorithms that supports static training must in in {supported_list} but got {algo}"
 | |
| 
 | |
|     specs = [
 | |
|         InputSpec(
 | |
|             [None] + config["Global"]["image_shape"], dtype='float32')
 | |
|     ]
 | |
| 
 | |
|     if algo == "SVTR":
 | |
|         specs.append([
 | |
|             InputSpec(
 | |
|                 [None, config["Global"]["max_text_length"]],
 | |
|                 dtype='int64'), InputSpec(
 | |
|                     [None, config["Global"]["max_text_length"]], dtype='int64'),
 | |
|             InputSpec(
 | |
|                 [None], dtype='int64'), InputSpec(
 | |
|                     [None], dtype='float64')
 | |
|         ])
 | |
| 
 | |
|     model = to_static(model, input_spec=specs)
 | |
|     logger.info("Successfully to apply @to_static with specs: {}".format(specs))
 | |
|     return model
 | 
