mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	 7054013004
			
		
	
	
		7054013004
		
			
		
	
	
	
	
		
			
			* add sr model * update for eval * submit sr * polish code * polish code * polish code * update sr model * update doc * update doc * update doc * fix typo * format code * update metric * fix export
		
			
				
	
	
		
			118 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			118 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| from paddle import nn
 | |
| from ppocr.modeling.transforms import build_transform
 | |
| from ppocr.modeling.backbones import build_backbone
 | |
| from ppocr.modeling.necks import build_neck
 | |
| from ppocr.modeling.heads import build_head
 | |
| 
 | |
| __all__ = ['BaseModel']
 | |
| 
 | |
| 
 | |
| class BaseModel(nn.Layer):
 | |
|     def __init__(self, config):
 | |
|         """
 | |
|         the module for OCR.
 | |
|         args:
 | |
|             config (dict): the super parameters for module.
 | |
|         """
 | |
|         super(BaseModel, self).__init__()
 | |
|         in_channels = config.get('in_channels', 3)
 | |
|         model_type = config['model_type']
 | |
|         # build transfrom,
 | |
|         # for rec, transfrom can be TPS,None
 | |
|         # for det and cls, transfrom shoule to be None,
 | |
|         # if you make model differently, you can use transfrom in det and cls
 | |
|         if 'Transform' not in config or config['Transform'] is None:
 | |
|             self.use_transform = False
 | |
|         else:
 | |
|             self.use_transform = True
 | |
|             config['Transform']['in_channels'] = in_channels
 | |
|             self.transform = build_transform(config['Transform'])
 | |
|             in_channels = self.transform.out_channels
 | |
| 
 | |
|         # build backbone, backbone is need for del, rec and cls
 | |
|         if 'Backbone' not in config or config['Backbone'] is None:
 | |
|             self.use_backbone = False
 | |
|         else:
 | |
|             self.use_backbone = True
 | |
|             config["Backbone"]['in_channels'] = in_channels
 | |
|             self.backbone = build_backbone(config["Backbone"], model_type)
 | |
|             in_channels = self.backbone.out_channels
 | |
| 
 | |
|         # build neck
 | |
|         # for rec, neck can be cnn,rnn or reshape(None)
 | |
|         # for det, neck can be FPN, BIFPN and so on.
 | |
|         # for cls, neck should be none
 | |
|         if 'Neck' not in config or config['Neck'] is None:
 | |
|             self.use_neck = False
 | |
|         else:
 | |
|             self.use_neck = True
 | |
|             config['Neck']['in_channels'] = in_channels
 | |
|             self.neck = build_neck(config['Neck'])
 | |
|             in_channels = self.neck.out_channels
 | |
| 
 | |
|         # # build head, head is need for det, rec and cls
 | |
|         if 'Head' not in config or config['Head'] is None:
 | |
|             self.use_head = False
 | |
|         else:
 | |
|             self.use_head = True
 | |
|             config["Head"]['in_channels'] = in_channels
 | |
|             self.head = build_head(config["Head"])
 | |
| 
 | |
|         self.return_all_feats = config.get("return_all_feats", False)
 | |
| 
 | |
|     def forward(self, x, data=None):
 | |
| 
 | |
|         y = dict()
 | |
|         if self.use_transform:
 | |
|             x = self.transform(x)
 | |
|         if self.use_backbone:
 | |
|             x = self.backbone(x)
 | |
|         if isinstance(x, dict):
 | |
|             y.update(x)
 | |
|         else:
 | |
|             y["backbone_out"] = x
 | |
|         final_name = "backbone_out"
 | |
|         if self.use_neck:
 | |
|             x = self.neck(x)
 | |
|             if isinstance(x, dict):
 | |
|                 y.update(x)
 | |
|             else:
 | |
|                 y["neck_out"] = x
 | |
|             final_name = "neck_out"
 | |
|         if self.use_head:
 | |
|             x = self.head(x, targets=data)
 | |
|             # for multi head, save ctc neck out for udml
 | |
|             if isinstance(x, dict) and 'ctc_neck' in x.keys():
 | |
|                 y["neck_out"] = x["ctc_neck"]
 | |
|                 y["head_out"] = x
 | |
|             elif isinstance(x, dict):
 | |
|                 y.update(x)
 | |
|             else:
 | |
|                 y["head_out"] = x
 | |
|             final_name = "head_out"
 | |
|         if self.return_all_feats:
 | |
|             if self.training:
 | |
|                 return y
 | |
|             elif isinstance(x, dict):
 | |
|                 return x
 | |
|             else:
 | |
|                 return {final_name: x}
 | |
|         else:
 | |
|             return x |