mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			63 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			63 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| from __future__ import unicode_literals
 | |
| import copy
 | |
| import paddle
 | |
| 
 | |
| __all__ = ['build_optimizer']
 | |
| 
 | |
| 
 | |
| def build_lr_scheduler(lr_config, epochs, step_each_epoch):
 | |
|     from . import learning_rate
 | |
|     lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch})
 | |
|     lr_name = lr_config.pop('name', 'Const')
 | |
|     lr = getattr(learning_rate, lr_name)(**lr_config)()
 | |
|     return lr
 | |
| 
 | |
| 
 | |
| def build_optimizer(config, epochs, step_each_epoch, model):
 | |
|     from . import regularizer, optimizer
 | |
|     config = copy.deepcopy(config)
 | |
|     # step1 build lr
 | |
|     lr = build_lr_scheduler(config.pop('lr'), epochs, step_each_epoch)
 | |
| 
 | |
|     # step2 build regularization
 | |
|     if 'regularizer' in config and config['regularizer'] is not None:
 | |
|         reg_config = config.pop('regularizer')
 | |
|         reg_name = reg_config.pop('name')
 | |
|         if not hasattr(regularizer, reg_name):
 | |
|             reg_name += 'Decay'
 | |
|         reg = getattr(regularizer, reg_name)(**reg_config)()
 | |
|     elif 'weight_decay' in config:
 | |
|         reg = config.pop('weight_decay')
 | |
|     else:
 | |
|         reg = None
 | |
| 
 | |
|     # step3 build optimizer
 | |
|     optim_name = config.pop('name')
 | |
|     if 'clip_norm' in config:
 | |
|         clip_norm = config.pop('clip_norm')
 | |
|         grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
 | |
|     else:
 | |
|         grad_clip = None
 | |
|     optim = getattr(optimizer, optim_name)(learning_rate=lr,
 | |
|                                            weight_decay=reg,
 | |
|                                            grad_clip=grad_clip,
 | |
|                                            **config)
 | |
|     return optim(model), lr
 | 
