mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-30 17:29:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			237 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| import paddle
 | |
| from paddle import ParamAttr
 | |
| import paddle.nn as nn
 | |
| import paddle.nn.functional as F
 | |
| from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
 | |
| from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
 | |
| from paddle.nn.initializer import Uniform
 | |
| 
 | |
| import math
 | |
| 
 | |
| from paddle.vision.ops import DeformConv2D
 | |
| from paddle.regularizer import L2Decay
 | |
| from paddle.nn.initializer import Normal, Constant, XavierUniform
 | |
| from .det_resnet_vd import DeformableConvV2, ConvBNLayer
 | |
| 
 | |
| 
 | |
| class BottleneckBlock(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  num_channels,
 | |
|                  num_filters,
 | |
|                  stride,
 | |
|                  shortcut=True,
 | |
|                  is_dcn=False):
 | |
|         super(BottleneckBlock, self).__init__()
 | |
| 
 | |
|         self.conv0 = ConvBNLayer(
 | |
|             in_channels=num_channels,
 | |
|             out_channels=num_filters,
 | |
|             kernel_size=1,
 | |
|             act="relu", )
 | |
|         self.conv1 = ConvBNLayer(
 | |
|             in_channels=num_filters,
 | |
|             out_channels=num_filters,
 | |
|             kernel_size=3,
 | |
|             stride=stride,
 | |
|             act="relu",
 | |
|             is_dcn=is_dcn,
 | |
|             dcn_groups=1, )
 | |
|         self.conv2 = ConvBNLayer(
 | |
|             in_channels=num_filters,
 | |
|             out_channels=num_filters * 4,
 | |
|             kernel_size=1,
 | |
|             act=None, )
 | |
| 
 | |
|         if not shortcut:
 | |
|             self.short = ConvBNLayer(
 | |
|                 in_channels=num_channels,
 | |
|                 out_channels=num_filters * 4,
 | |
|                 kernel_size=1,
 | |
|                 stride=stride, )
 | |
| 
 | |
|         self.shortcut = shortcut
 | |
| 
 | |
|         self._num_channels_out = num_filters * 4
 | |
| 
 | |
|     def forward(self, inputs):
 | |
|         y = self.conv0(inputs)
 | |
|         conv1 = self.conv1(y)
 | |
|         conv2 = self.conv2(conv1)
 | |
| 
 | |
|         if self.shortcut:
 | |
|             short = inputs
 | |
|         else:
 | |
|             short = self.short(inputs)
 | |
| 
 | |
|         y = paddle.add(x=short, y=conv2)
 | |
|         y = F.relu(y)
 | |
|         return y
 | |
| 
 | |
| 
 | |
| class BasicBlock(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  num_channels,
 | |
|                  num_filters,
 | |
|                  stride,
 | |
|                  shortcut=True,
 | |
|                  name=None):
 | |
|         super(BasicBlock, self).__init__()
 | |
|         self.stride = stride
 | |
|         self.conv0 = ConvBNLayer(
 | |
|             in_channels=num_channels,
 | |
|             out_channels=num_filters,
 | |
|             kernel_size=3,
 | |
|             stride=stride,
 | |
|             act="relu")
 | |
|         self.conv1 = ConvBNLayer(
 | |
|             in_channels=num_filters,
 | |
|             out_channels=num_filters,
 | |
|             kernel_size=3,
 | |
|             act=None)
 | |
| 
 | |
|         if not shortcut:
 | |
|             self.short = ConvBNLayer(
 | |
|                 in_channels=num_channels,
 | |
|                 out_channels=num_filters,
 | |
|                 kernel_size=1,
 | |
|                 stride=stride)
 | |
| 
 | |
|         self.shortcut = shortcut
 | |
| 
 | |
|     def forward(self, inputs):
 | |
|         y = self.conv0(inputs)
 | |
|         conv1 = self.conv1(y)
 | |
| 
 | |
|         if self.shortcut:
 | |
|             short = inputs
 | |
|         else:
 | |
|             short = self.short(inputs)
 | |
|         y = paddle.add(x=short, y=conv1)
 | |
|         y = F.relu(y)
 | |
|         return y
 | |
| 
 | |
| 
 | |
| class ResNet(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_channels=3,
 | |
|                  layers=50,
 | |
|                  out_indices=None,
 | |
|                  dcn_stage=None):
 | |
|         super(ResNet, self).__init__()
 | |
| 
 | |
|         self.layers = layers
 | |
|         self.input_image_channel = in_channels
 | |
| 
 | |
|         supported_layers = [18, 34, 50, 101, 152]
 | |
|         assert layers in supported_layers, \
 | |
|             "supported layers are {} but input layer is {}".format(
 | |
|                 supported_layers, layers)
 | |
| 
 | |
|         if layers == 18:
 | |
|             depth = [2, 2, 2, 2]
 | |
|         elif layers == 34 or layers == 50:
 | |
|             depth = [3, 4, 6, 3]
 | |
|         elif layers == 101:
 | |
|             depth = [3, 4, 23, 3]
 | |
|         elif layers == 152:
 | |
|             depth = [3, 8, 36, 3]
 | |
|         num_channels = [64, 256, 512,
 | |
|                         1024] if layers >= 50 else [64, 64, 128, 256]
 | |
|         num_filters = [64, 128, 256, 512]
 | |
| 
 | |
|         self.dcn_stage = dcn_stage if dcn_stage is not None else [
 | |
|             False, False, False, False
 | |
|         ]
 | |
|         self.out_indices = out_indices if out_indices is not None else [
 | |
|             0, 1, 2, 3
 | |
|         ]
 | |
| 
 | |
|         self.conv = ConvBNLayer(
 | |
|             in_channels=self.input_image_channel,
 | |
|             out_channels=64,
 | |
|             kernel_size=7,
 | |
|             stride=2,
 | |
|             act="relu", )
 | |
|         self.pool2d_max = MaxPool2D(
 | |
|             kernel_size=3,
 | |
|             stride=2,
 | |
|             padding=1, )
 | |
| 
 | |
|         self.stages = []
 | |
|         self.out_channels = []
 | |
|         if layers >= 50:
 | |
|             for block in range(len(depth)):
 | |
|                 shortcut = False
 | |
|                 block_list = []
 | |
|                 is_dcn = self.dcn_stage[block]
 | |
|                 for i in range(depth[block]):
 | |
|                     if layers in [101, 152] and block == 2:
 | |
|                         if i == 0:
 | |
|                             conv_name = "res" + str(block + 2) + "a"
 | |
|                         else:
 | |
|                             conv_name = "res" + str(block + 2) + "b" + str(i)
 | |
|                     else:
 | |
|                         conv_name = "res" + str(block + 2) + chr(97 + i)
 | |
|                     bottleneck_block = self.add_sublayer(
 | |
|                         conv_name,
 | |
|                         BottleneckBlock(
 | |
|                             num_channels=num_channels[block]
 | |
|                             if i == 0 else num_filters[block] * 4,
 | |
|                             num_filters=num_filters[block],
 | |
|                             stride=2 if i == 0 and block != 0 else 1,
 | |
|                             shortcut=shortcut,
 | |
|                             is_dcn=is_dcn))
 | |
|                     block_list.append(bottleneck_block)
 | |
|                     shortcut = True
 | |
|                 if block in self.out_indices:
 | |
|                     self.out_channels.append(num_filters[block] * 4)
 | |
|                 self.stages.append(nn.Sequential(*block_list))
 | |
|         else:
 | |
|             for block in range(len(depth)):
 | |
|                 shortcut = False
 | |
|                 block_list = []
 | |
|                 for i in range(depth[block]):
 | |
|                     conv_name = "res" + str(block + 2) + chr(97 + i)
 | |
|                     basic_block = self.add_sublayer(
 | |
|                         conv_name,
 | |
|                         BasicBlock(
 | |
|                             num_channels=num_channels[block]
 | |
|                             if i == 0 else num_filters[block],
 | |
|                             num_filters=num_filters[block],
 | |
|                             stride=2 if i == 0 and block != 0 else 1,
 | |
|                             shortcut=shortcut))
 | |
|                     block_list.append(basic_block)
 | |
|                     shortcut = True
 | |
|                 if block in self.out_indices:
 | |
|                     self.out_channels.append(num_filters[block])
 | |
|                 self.stages.append(nn.Sequential(*block_list))
 | |
| 
 | |
|     def forward(self, inputs):
 | |
|         y = self.conv(inputs)
 | |
|         y = self.pool2d_max(y)
 | |
|         out = []
 | |
|         for i, block in enumerate(self.stages):
 | |
|             y = block(y)
 | |
|             if i in self.out_indices:
 | |
|                 out.append(y)
 | |
|         return out
 | 
