mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			139 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from paddle import nn
 | |
| 
 | |
| from ppocr.modeling.backbones.det_mobilenet_v3 import ResidualUnit, ConvBNLayer, make_divisible
 | |
| 
 | |
| __all__ = ['MobileNetV3']
 | |
| 
 | |
| 
 | |
| class MobileNetV3(nn.Layer):
 | |
|     def __init__(self,
 | |
|                  in_channels=3,
 | |
|                  model_name='small',
 | |
|                  scale=0.5,
 | |
|                  large_stride=None,
 | |
|                  small_stride=None,
 | |
|                  disable_se=False,
 | |
|                  **kwargs):
 | |
|         super(MobileNetV3, self).__init__()
 | |
|         self.disable_se = disable_se
 | |
|         if small_stride is None:
 | |
|             small_stride = [2, 2, 2, 2]
 | |
|         if large_stride is None:
 | |
|             large_stride = [1, 2, 2, 2]
 | |
| 
 | |
|         assert isinstance(large_stride, list), "large_stride type must " \
 | |
|                                                "be list but got {}".format(type(large_stride))
 | |
|         assert isinstance(small_stride, list), "small_stride type must " \
 | |
|                                                "be list but got {}".format(type(small_stride))
 | |
|         assert len(large_stride) == 4, "large_stride length must be " \
 | |
|                                        "4 but got {}".format(len(large_stride))
 | |
|         assert len(small_stride) == 4, "small_stride length must be " \
 | |
|                                        "4 but got {}".format(len(small_stride))
 | |
| 
 | |
|         if model_name == "large":
 | |
|             cfg = [
 | |
|                 # k, exp, c,  se,     nl,  s,
 | |
|                 [3, 16, 16, False, 'relu', large_stride[0]],
 | |
|                 [3, 64, 24, False, 'relu', (large_stride[1], 1)],
 | |
|                 [3, 72, 24, False, 'relu', 1],
 | |
|                 [5, 72, 40, True, 'relu', (large_stride[2], 1)],
 | |
|                 [5, 120, 40, True, 'relu', 1],
 | |
|                 [5, 120, 40, True, 'relu', 1],
 | |
|                 [3, 240, 80, False, 'hardswish', 1],
 | |
|                 [3, 200, 80, False, 'hardswish', 1],
 | |
|                 [3, 184, 80, False, 'hardswish', 1],
 | |
|                 [3, 184, 80, False, 'hardswish', 1],
 | |
|                 [3, 480, 112, True, 'hardswish', 1],
 | |
|                 [3, 672, 112, True, 'hardswish', 1],
 | |
|                 [5, 672, 160, True, 'hardswish', (large_stride[3], 1)],
 | |
|                 [5, 960, 160, True, 'hardswish', 1],
 | |
|                 [5, 960, 160, True, 'hardswish', 1],
 | |
|             ]
 | |
|             cls_ch_squeeze = 960
 | |
|         elif model_name == "small":
 | |
|             cfg = [
 | |
|                 # k, exp, c,  se,     nl,  s,
 | |
|                 [3, 16, 16, True, 'relu', (small_stride[0], 1)],
 | |
|                 [3, 72, 24, False, 'relu', (small_stride[1], 1)],
 | |
|                 [3, 88, 24, False, 'relu', 1],
 | |
|                 [5, 96, 40, True, 'hardswish', (small_stride[2], 1)],
 | |
|                 [5, 240, 40, True, 'hardswish', 1],
 | |
|                 [5, 240, 40, True, 'hardswish', 1],
 | |
|                 [5, 120, 48, True, 'hardswish', 1],
 | |
|                 [5, 144, 48, True, 'hardswish', 1],
 | |
|                 [5, 288, 96, True, 'hardswish', (small_stride[3], 1)],
 | |
|                 [5, 576, 96, True, 'hardswish', 1],
 | |
|                 [5, 576, 96, True, 'hardswish', 1],
 | |
|             ]
 | |
|             cls_ch_squeeze = 576
 | |
|         else:
 | |
|             raise NotImplementedError("mode[" + model_name +
 | |
|                                       "_model] is not implemented!")
 | |
| 
 | |
|         supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
 | |
|         assert scale in supported_scale, \
 | |
|             "supported scales are {} but input scale is {}".format(supported_scale, scale)
 | |
| 
 | |
|         inplanes = 16
 | |
|         # conv1
 | |
|         self.conv1 = ConvBNLayer(
 | |
|             in_channels=in_channels,
 | |
|             out_channels=make_divisible(inplanes * scale),
 | |
|             kernel_size=3,
 | |
|             stride=2,
 | |
|             padding=1,
 | |
|             groups=1,
 | |
|             if_act=True,
 | |
|             act='hardswish')
 | |
|         i = 0
 | |
|         block_list = []
 | |
|         inplanes = make_divisible(inplanes * scale)
 | |
|         for (k, exp, c, se, nl, s) in cfg:
 | |
|             se = se and not self.disable_se
 | |
|             block_list.append(
 | |
|                 ResidualUnit(
 | |
|                     in_channels=inplanes,
 | |
|                     mid_channels=make_divisible(scale * exp),
 | |
|                     out_channels=make_divisible(scale * c),
 | |
|                     kernel_size=k,
 | |
|                     stride=s,
 | |
|                     use_se=se,
 | |
|                     act=nl))
 | |
|             inplanes = make_divisible(scale * c)
 | |
|             i += 1
 | |
|         self.blocks = nn.Sequential(*block_list)
 | |
| 
 | |
|         self.conv2 = ConvBNLayer(
 | |
|             in_channels=inplanes,
 | |
|             out_channels=make_divisible(scale * cls_ch_squeeze),
 | |
|             kernel_size=1,
 | |
|             stride=1,
 | |
|             padding=0,
 | |
|             groups=1,
 | |
|             if_act=True,
 | |
|             act='hardswish')
 | |
| 
 | |
|         self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
 | |
|         self.out_channels = make_divisible(scale * cls_ch_squeeze)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.conv1(x)
 | |
|         x = self.blocks(x)
 | |
|         x = self.conv2(x)
 | |
|         x = self.pool(x)
 | |
|         return x
 | 
