mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-30 17:29:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			142 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			142 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #    http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import errno
 | |
| import os
 | |
| import pickle
 | |
| import six
 | |
| 
 | |
| import paddle
 | |
| 
 | |
| from ppocr.utils.logging import get_logger
 | |
| 
 | |
| __all__ = ['load_model']
 | |
| 
 | |
| 
 | |
| def _mkdir_if_not_exist(path, logger):
 | |
|     """
 | |
|     mkdir if not exists, ignore the exception when multiprocess mkdir together
 | |
|     """
 | |
|     if not os.path.exists(path):
 | |
|         try:
 | |
|             os.makedirs(path)
 | |
|         except OSError as e:
 | |
|             if e.errno == errno.EEXIST and os.path.isdir(path):
 | |
|                 logger.warning(
 | |
|                     'be happy if some process has already created {}'.format(
 | |
|                         path))
 | |
|             else:
 | |
|                 raise OSError('Failed to mkdir {}'.format(path))
 | |
| 
 | |
| 
 | |
| def load_model(config, model, optimizer=None):
 | |
|     """
 | |
|     load model from checkpoint or pretrained_model
 | |
|     """
 | |
|     logger = get_logger()
 | |
|     global_config = config['Global']
 | |
|     checkpoints = global_config.get('checkpoints')
 | |
|     pretrained_model = global_config.get('pretrained_model')
 | |
|     best_model_dict = {}
 | |
|     if checkpoints:
 | |
|         if checkpoints.endswith('.pdparams'):
 | |
|             checkpoints = checkpoints.replace('.pdparams', '')
 | |
|         assert os.path.exists(checkpoints + ".pdparams"), \
 | |
|             "The {}.pdparams does not exists!".format(checkpoints)
 | |
| 
 | |
|         # load params from trained model
 | |
|         params = paddle.load(checkpoints + '.pdparams')
 | |
|         state_dict = model.state_dict()
 | |
|         new_state_dict = {}
 | |
|         for key, value in state_dict.items():
 | |
|             if key not in params:
 | |
|                 logger.warning("{} not in loaded params {} !".format(
 | |
|                     key, params.keys()))
 | |
|             pre_value = params[key]
 | |
|             if list(value.shape) == list(pre_value.shape):
 | |
|                 new_state_dict[key] = pre_value
 | |
|             else:
 | |
|                 logger.warning(
 | |
|                     "The shape of model params {} {} not matched with loaded params shape {} !".
 | |
|                     format(key, value.shape, pre_value.shape))
 | |
|         model.set_state_dict(new_state_dict)
 | |
| 
 | |
|         optim_dict = paddle.load(checkpoints + '.pdopt')
 | |
|         if optimizer is not None:
 | |
|             optimizer.set_state_dict(optim_dict)
 | |
| 
 | |
|         if os.path.exists(checkpoints + '.states'):
 | |
|             with open(checkpoints + '.states', 'rb') as f:
 | |
|                 states_dict = pickle.load(f) if six.PY2 else pickle.load(
 | |
|                     f, encoding='latin1')
 | |
|             best_model_dict = states_dict.get('best_model_dict', {})
 | |
|             if 'epoch' in states_dict:
 | |
|                 best_model_dict['start_epoch'] = states_dict['epoch'] + 1
 | |
|         logger.info("resume from {}".format(checkpoints))
 | |
|     elif pretrained_model:
 | |
|         load_pretrained_params(model, pretrained_model)
 | |
|     else:
 | |
|         logger.info('train from scratch')
 | |
|     return best_model_dict
 | |
| 
 | |
| 
 | |
| def load_pretrained_params(model, path):
 | |
|     logger = get_logger()
 | |
|     if path.endswith('.pdparams'):
 | |
|         path = path.replace('.pdparams', '')
 | |
|     assert os.path.exists(path + ".pdparams"), \
 | |
|         "The {}.pdparams does not exists!".format(path)
 | |
| 
 | |
|     params = paddle.load(path + '.pdparams')
 | |
|     state_dict = model.state_dict()
 | |
|     new_state_dict = {}
 | |
|     for k1, k2 in zip(state_dict.keys(), params.keys()):
 | |
|         if list(state_dict[k1].shape) == list(params[k2].shape):
 | |
|             new_state_dict[k1] = params[k2]
 | |
|         else:
 | |
|             logger.warning(
 | |
|                 "The shape of model params {} {} not matched with loaded params {} {} !".
 | |
|                 format(k1, state_dict[k1].shape, k2, params[k2].shape))
 | |
|     model.set_state_dict(new_state_dict)
 | |
|     logger.info("load pretrain successful from {}".format(path))
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def save_model(model,
 | |
|                optimizer,
 | |
|                model_path,
 | |
|                logger,
 | |
|                is_best=False,
 | |
|                prefix='ppocr',
 | |
|                **kwargs):
 | |
|     """
 | |
|     save model to the target path
 | |
|     """
 | |
|     _mkdir_if_not_exist(model_path, logger)
 | |
|     model_prefix = os.path.join(model_path, prefix)
 | |
|     paddle.save(model.state_dict(), model_prefix + '.pdparams')
 | |
|     paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
 | |
| 
 | |
|     # save metric and config
 | |
|     with open(model_prefix + '.states', 'wb') as f:
 | |
|         pickle.dump(kwargs, f, protocol=2)
 | |
|     if is_best:
 | |
|         logger.info('save best model is to {}'.format(model_prefix))
 | |
|     else:
 | |
|         logger.info("save model in {}".format(model_prefix))
 | 
