mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 17:59:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			193 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			193 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| import json
 | |
| def distance(box_1, box_2):
 | |
|         x1, y1, x2, y2 = box_1
 | |
|         x3, y3, x4, y4 = box_2
 | |
|         dis = abs(x3 - x1) + abs(y3 - y1) + abs(x4- x2) + abs(y4 - y2)
 | |
|         dis_2 = abs(x3 - x1) + abs(y3 - y1)
 | |
|         dis_3 = abs(x4- x2) + abs(y4 - y2)
 | |
|         return dis + min(dis_2, dis_3)
 | |
| 
 | |
| def compute_iou(rec1, rec2):
 | |
|     """
 | |
|     computing IoU
 | |
|     :param rec1: (y0, x0, y1, x1), which reflects
 | |
|             (top, left, bottom, right)
 | |
|     :param rec2: (y0, x0, y1, x1)
 | |
|     :return: scala value of IoU
 | |
|     """
 | |
|     # computing area of each rectangles
 | |
|     S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
 | |
|     S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
 | |
|  
 | |
|     # computing the sum_area
 | |
|     sum_area = S_rec1 + S_rec2
 | |
|  
 | |
|     # find the each edge of intersect rectangle
 | |
|     left_line = max(rec1[1], rec2[1])
 | |
|     right_line = min(rec1[3], rec2[3])
 | |
|     top_line = max(rec1[0], rec2[0])
 | |
|     bottom_line = min(rec1[2], rec2[2])
 | |
|  
 | |
|     # judge if there is an intersect
 | |
|     if left_line >= right_line or top_line >= bottom_line:
 | |
|         return 0.0
 | |
|     else:
 | |
|         intersect = (right_line - left_line) * (bottom_line - top_line)
 | |
|         return (intersect / (sum_area - intersect))*1.0
 | |
|  
 | |
| 
 | |
| 
 | |
| def matcher_merge(ocr_bboxes, pred_bboxes):
 | |
|     all_dis = []
 | |
|     ious = []
 | |
|     matched = {}
 | |
|     for i, gt_box in enumerate(ocr_bboxes):
 | |
|         distances = []
 | |
|         for j, pred_box in enumerate(pred_bboxes):
 | |
|             # compute l1 distence and IOU between two boxes
 | |
|             distances.append((distance(gt_box, pred_box), 1. - compute_iou(gt_box, pred_box)))
 | |
|         sorted_distances = distances.copy()
 | |
|         # select nearest cell
 | |
|         sorted_distances = sorted(sorted_distances, key = lambda item: (item[1], item[0])) 
 | |
|         if distances.index(sorted_distances[0]) not in matched.keys(): 
 | |
|             matched[distances.index(sorted_distances[0])] = [i]
 | |
|         else:
 | |
|             matched[distances.index(sorted_distances[0])].append(i)
 | |
|     return matched#, sum(ious) / len(ious)
 | |
| 
 | |
| def complex_num(pred_bboxes):
 | |
|     complex_nums = []
 | |
|     for bbox in pred_bboxes:
 | |
|         distances = []
 | |
|         temp_ious = []
 | |
|         for pred_bbox in pred_bboxes:
 | |
|             if bbox != pred_bbox:
 | |
|                 distances.append(distance(bbox, pred_bbox))
 | |
|                 temp_ious.append(compute_iou(bbox, pred_bbox))
 | |
|         complex_nums.append(temp_ious[distances.index(min(distances))])
 | |
|     return sum(complex_nums) / len(complex_nums)
 | |
| 
 | |
| def get_rows(pred_bboxes):
 | |
|     pre_bbox = pred_bboxes[0]
 | |
|     res = []
 | |
|     step = 0
 | |
|     for i in range(len(pred_bboxes)):
 | |
|         bbox = pred_bboxes[i]
 | |
|         if bbox[1] - pre_bbox[1] > 2 or bbox[0] - pre_bbox[0] < 0:
 | |
|             break
 | |
|         else:
 | |
|             res.append(bbox)
 | |
|             step += 1
 | |
|     for i in range(step):
 | |
|         pred_bboxes.pop(0)
 | |
|     return res, pred_bboxes
 | |
| def refine_rows(pred_bboxes): # 微调整行的框,使在一条水平线上
 | |
|     ys_1 = []
 | |
|     ys_2 = []
 | |
|     for box in pred_bboxes:
 | |
|         ys_1.append(box[1])
 | |
|         ys_2.append(box[3])
 | |
|     min_y_1 = sum(ys_1) / len(ys_1)
 | |
|     min_y_2 = sum(ys_2) / len(ys_2)
 | |
|     re_boxes = []
 | |
|     for box in pred_bboxes:
 | |
|         box[1] = min_y_1
 | |
|         box[3] = min_y_2
 | |
|         re_boxes.append(box)
 | |
|     return re_boxes
 | |
|     
 | |
| def matcher_refine_row(gt_bboxes, pred_bboxes):
 | |
|     before_refine_pred_bboxes = pred_bboxes.copy()
 | |
|     pred_bboxes = []
 | |
|     while(len(before_refine_pred_bboxes) != 0):
 | |
|         row_bboxes, before_refine_pred_bboxes = get_rows(before_refine_pred_bboxes)
 | |
|         print(row_bboxes)
 | |
|         pred_bboxes.extend(refine_rows(row_bboxes))
 | |
|     all_dis = []
 | |
|     ious = []
 | |
|     matched = {}
 | |
|     for i, gt_box in enumerate(gt_bboxes):
 | |
|         distances = []
 | |
|         #temp_ious = []
 | |
|         for j, pred_box in enumerate(pred_bboxes):
 | |
|             distances.append(distance(gt_box, pred_box))
 | |
|             #temp_ious.append(compute_iou(gt_box, pred_box))
 | |
|         #all_dis.append(min(distances))
 | |
|         #ious.append(temp_ious[distances.index(min(distances))])
 | |
|         if distances.index(min(distances)) not in matched.keys(): 
 | |
|             matched[distances.index(min(distances))] = [i]
 | |
|         else:
 | |
|             matched[distances.index(min(distances))].append(i)
 | |
|     return matched#, sum(ious) / len(ious)
 | |
| 
 | |
| 
 | |
| 
 | |
| #先挑选出一行,再进行匹配
 | |
| def matcher_structure_1(gt_bboxes, pred_bboxes_rows, pred_bboxes):
 | |
|     gt_box_index = 0
 | |
|     delete_gt_bboxes = gt_bboxes.copy()
 | |
|     match_bboxes_ready = []
 | |
|     matched = {}
 | |
|     while(len(delete_gt_bboxes) != 0):
 | |
|         row_bboxes, delete_gt_bboxes = get_rows(delete_gt_bboxes)
 | |
|         row_bboxes = sorted(row_bboxes, key = lambda key: key[0])
 | |
|         if len(pred_bboxes_rows) > 0:
 | |
|             match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
 | |
|         print(row_bboxes)
 | |
|         for i, gt_box in enumerate(row_bboxes):
 | |
|             #print(gt_box)
 | |
|             pred_distances = []
 | |
|             distances = []  
 | |
|             for pred_bbox in pred_bboxes:
 | |
|                 pred_distances.append(distance(gt_box, pred_bbox))
 | |
|             for j, pred_box in enumerate(match_bboxes_ready):
 | |
|                 distances.append(distance(gt_box, pred_box))
 | |
|             index = pred_distances.index(min(distances))
 | |
|             #print('index', index)
 | |
|             if index not in matched.keys(): 
 | |
|                 matched[index] = [gt_box_index]
 | |
|             else:
 | |
|                 matched[index].append(gt_box_index)
 | |
|             gt_box_index += 1
 | |
|     return matched
 | |
| 
 | |
| def matcher_structure(gt_bboxes, pred_bboxes_rows, pred_bboxes):
 | |
|     '''
 | |
|     gt_bboxes: 排序后
 | |
|     pred_bboxes: 
 | |
|     '''
 | |
|     pre_bbox = gt_bboxes[0]
 | |
|     matched = {}
 | |
|     match_bboxes_ready = []
 | |
|     match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
 | |
|     for i, gt_box in enumerate(gt_bboxes):
 | |
|         
 | |
|         pred_distances = []
 | |
|         for pred_bbox in pred_bboxes:
 | |
|             pred_distances.append(distance(gt_box, pred_bbox))
 | |
|         distances = []
 | |
|         gap_pre = gt_box[1] - pre_bbox[1]
 | |
|         gap_pre_1 = gt_box[0] - pre_bbox[2]
 | |
|         #print(gap_pre, len(pred_bboxes_rows))
 | |
|         if (gap_pre_1 < 0 and len(pred_bboxes_rows) > 0):
 | |
|             match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
 | |
|         if len(pred_bboxes_rows) == 1:
 | |
|             match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
 | |
|         if len(match_bboxes_ready) == 0 and len(pred_bboxes_rows) > 0:
 | |
|             match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
 | |
|         if len(match_bboxes_ready) == 0 and len(pred_bboxes_rows) == 0:
 | |
|             break
 | |
|         #print(match_bboxes_ready)
 | |
|         for j, pred_box in enumerate(match_bboxes_ready):
 | |
|             distances.append(distance(gt_box, pred_box))
 | |
|         index = pred_distances.index(min(distances))
 | |
|         #print(gt_box, index)
 | |
|         #match_bboxes_ready.pop(distances.index(min(distances)))
 | |
|         print(gt_box, match_bboxes_ready[distances.index(min(distances))])
 | |
|         if index not in matched.keys(): 
 | |
|             matched[index] = [i]
 | |
|         else:
 | |
|             matched[index].append(i)
 | |
|         pre_bbox = gt_box
 | |
|     return matched
 | 
