mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 09:49:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			147 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			147 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from __future__ import absolute_import
 | |
| from __future__ import division
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| import os
 | |
| import sys
 | |
| import json
 | |
| 
 | |
| __dir__ = os.path.dirname(os.path.abspath(__file__))
 | |
| sys.path.append(__dir__)
 | |
| sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
 | |
| 
 | |
| os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
 | |
| 
 | |
| import paddle
 | |
| 
 | |
| from ppocr.data import create_operators, transform
 | |
| from ppocr.modeling.architectures import build_model
 | |
| from ppocr.postprocess import build_post_process
 | |
| from ppocr.utils.save_load import load_model
 | |
| from ppocr.utils.utility import get_image_file_list
 | |
| import tools.program as program
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     global_config = config['Global']
 | |
| 
 | |
|     # build post process
 | |
|     post_process_class = build_post_process(config['PostProcess'],
 | |
|                                             global_config)
 | |
| 
 | |
|     # build model
 | |
|     if hasattr(post_process_class, 'character'):
 | |
|         char_num = len(getattr(post_process_class, 'character'))
 | |
|         if config['Architecture']["algorithm"] in ["Distillation",
 | |
|                                                    ]:  # distillation model
 | |
|             for key in config['Architecture']["Models"]:
 | |
|                 config['Architecture']["Models"][key]["Head"][
 | |
|                     'out_channels'] = char_num
 | |
|         else:  # base rec model
 | |
|             config['Architecture']["Head"]['out_channels'] = char_num
 | |
| 
 | |
|     model = build_model(config['Architecture'])
 | |
| 
 | |
|     load_model(config, model)
 | |
| 
 | |
|     # create data ops
 | |
|     transforms = []
 | |
|     for op in config['Eval']['dataset']['transforms']:
 | |
|         op_name = list(op)[0]
 | |
|         if 'Label' in op_name:
 | |
|             continue
 | |
|         elif op_name in ['RecResizeImg']:
 | |
|             op[op_name]['infer_mode'] = True
 | |
|         elif op_name == 'KeepKeys':
 | |
|             if config['Architecture']['algorithm'] == "SRN":
 | |
|                 op[op_name]['keep_keys'] = [
 | |
|                     'image', 'encoder_word_pos', 'gsrm_word_pos',
 | |
|                     'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
 | |
|                 ]
 | |
|             elif config['Architecture']['algorithm'] == "SAR":
 | |
|                 op[op_name]['keep_keys'] = ['image', 'valid_ratio']
 | |
|             else:
 | |
|                 op[op_name]['keep_keys'] = ['image']
 | |
|         transforms.append(op)
 | |
|     global_config['infer_mode'] = True
 | |
|     ops = create_operators(transforms, global_config)
 | |
| 
 | |
|     save_res_path = config['Global'].get('save_res_path',
 | |
|                                          "./output/rec/predicts_rec.txt")
 | |
|     if not os.path.exists(os.path.dirname(save_res_path)):
 | |
|         os.makedirs(os.path.dirname(save_res_path))
 | |
| 
 | |
|     model.eval()
 | |
| 
 | |
|     with open(save_res_path, "w") as fout:
 | |
|         for file in get_image_file_list(config['Global']['infer_img']):
 | |
|             logger.info("infer_img: {}".format(file))
 | |
|             with open(file, 'rb') as f:
 | |
|                 img = f.read()
 | |
|                 data = {'image': img}
 | |
|             batch = transform(data, ops)
 | |
|             if config['Architecture']['algorithm'] == "SRN":
 | |
|                 encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
 | |
|                 gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
 | |
|                 gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
 | |
|                 gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)
 | |
| 
 | |
|                 others = [
 | |
|                     paddle.to_tensor(encoder_word_pos_list),
 | |
|                     paddle.to_tensor(gsrm_word_pos_list),
 | |
|                     paddle.to_tensor(gsrm_slf_attn_bias1_list),
 | |
|                     paddle.to_tensor(gsrm_slf_attn_bias2_list)
 | |
|                 ]
 | |
|             if config['Architecture']['algorithm'] == "SAR":
 | |
|                 valid_ratio = np.expand_dims(batch[-1], axis=0)
 | |
|                 img_metas = [paddle.to_tensor(valid_ratio)]
 | |
| 
 | |
|             images = np.expand_dims(batch[0], axis=0)
 | |
|             images = paddle.to_tensor(images)
 | |
|             if config['Architecture']['algorithm'] == "SRN":
 | |
|                 preds = model(images, others)
 | |
|             elif config['Architecture']['algorithm'] == "SAR":
 | |
|                 preds = model(images, img_metas)
 | |
|             else:
 | |
|                 preds = model(images)
 | |
|             post_result = post_process_class(preds)
 | |
|             info = None
 | |
|             if isinstance(post_result, dict):
 | |
|                 rec_info = dict()
 | |
|                 for key in post_result:
 | |
|                     if len(post_result[key][0]) >= 2:
 | |
|                         rec_info[key] = {
 | |
|                             "label": post_result[key][0][0],
 | |
|                             "score": float(post_result[key][0][1]),
 | |
|                         }
 | |
|                 info = json.dumps(rec_info)
 | |
|             else:
 | |
|                 if len(post_result[0]) >= 2:
 | |
|                     info = post_result[0][0] + "\t" + str(post_result[0][1])
 | |
| 
 | |
|             if info is not None:
 | |
|                 logger.info("\t result: {}".format(info))
 | |
|                 fout.write(file + "\t" + info)
 | |
|     logger.info("success!")
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     config, device, logger, vdl_writer = program.preprocess()
 | |
|     main()
 | 
