mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-03 19:29:18 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			84 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			84 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import os
 | 
						|
import sys
 | 
						|
 | 
						|
__dir__ = os.path.dirname(os.path.abspath(__file__))
 | 
						|
sys.path.append(__dir__)
 | 
						|
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
 | 
						|
 | 
						|
from ppocr.data import build_dataloader
 | 
						|
from ppocr.modeling.architectures import build_model
 | 
						|
from ppocr.postprocess import build_post_process
 | 
						|
from ppocr.metrics import build_metric
 | 
						|
from ppocr.utils.save_load import init_model, load_dygraph_params
 | 
						|
from ppocr.utils.utility import print_dict
 | 
						|
import tools.program as program
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    global_config = config['Global']
 | 
						|
    # build dataloader
 | 
						|
    valid_dataloader = build_dataloader(config, 'Eval', device, logger)
 | 
						|
 | 
						|
    # build post process
 | 
						|
    post_process_class = build_post_process(config['PostProcess'],
 | 
						|
                                            global_config)
 | 
						|
 | 
						|
    # build model
 | 
						|
    # for rec algorithm
 | 
						|
    if hasattr(post_process_class, 'character'):
 | 
						|
        char_num = len(getattr(post_process_class, 'character'))
 | 
						|
        if config['Architecture']["algorithm"] in ["Distillation",
 | 
						|
                                                   ]:  # distillation model
 | 
						|
            for key in config['Architecture']["Models"]:
 | 
						|
                config['Architecture']["Models"][key]["Head"][
 | 
						|
                    'out_channels'] = char_num
 | 
						|
        else:  # base rec model
 | 
						|
            config['Architecture']["Head"]['out_channels'] = char_num
 | 
						|
 | 
						|
    model = build_model(config['Architecture'])
 | 
						|
    use_srn = config['Architecture']['algorithm'] == "SRN"
 | 
						|
    use_sar = config['Architecture']['algorithm'] == "SAR"
 | 
						|
    if "model_type" in config['Architecture'].keys():
 | 
						|
        model_type = config['Architecture']['model_type']
 | 
						|
    else:
 | 
						|
        model_type = None
 | 
						|
 | 
						|
    best_model_dict = load_dygraph_params(config, model, logger, None)
 | 
						|
    if len(best_model_dict):
 | 
						|
        logger.info('metric in ckpt ***************')
 | 
						|
        for k, v in best_model_dict.items():
 | 
						|
            logger.info('{}:{}'.format(k, v))
 | 
						|
 | 
						|
    # build metric
 | 
						|
    eval_class = build_metric(config['Metric'])
 | 
						|
 | 
						|
    # start eval
 | 
						|
    metric = program.eval(model, valid_dataloader, post_process_class,
 | 
						|
                        eval_class, model_type, use_srn, use_sar)
 | 
						|
    logger.info('metric eval ***************')
 | 
						|
    for k, v in metric.items():
 | 
						|
        logger.info('{}:{}'.format(k, v))
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    config, device, logger, vdl_writer = program.preprocess()
 | 
						|
    main()
 |