mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-30 17:29:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			77 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import paddle
 | |
| import paddle.nn as nn
 | |
| from paddle.vision.transforms import Compose, Normalize
 | |
| from paddle.utils.cpp_extension import load
 | |
| from paddle.inference import Config
 | |
| from paddle.inference import create_predictor
 | |
| import numpy as np
 | |
| 
 | |
| EPOCH_NUM = 4
 | |
| BATCH_SIZE = 64
 | |
| 
 | |
| # jit compile custom op
 | |
| custom_ops = load(
 | |
|     name="custom_jit_ops", sources=["custom_relu_op.cc", "custom_relu_op.cu"])
 | |
| 
 | |
| 
 | |
| class LeNet(nn.Layer):
 | |
|     def __init__(self):
 | |
|         super(LeNet, self).__init__()
 | |
|         self.conv1 = nn.Conv2D(
 | |
|             in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2)
 | |
|         self.max_pool1 = nn.MaxPool2D(kernel_size=2, stride=2)
 | |
|         self.conv2 = nn.Conv2D(
 | |
|             in_channels=6, out_channels=16, kernel_size=5, stride=1)
 | |
|         self.max_pool2 = nn.MaxPool2D(kernel_size=2, stride=2)
 | |
|         self.linear1 = nn.Linear(in_features=16 * 5 * 5, out_features=120)
 | |
|         self.linear2 = nn.Linear(in_features=120, out_features=84)
 | |
|         self.linear3 = nn.Linear(in_features=84, out_features=10)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = self.conv1(x)
 | |
|         x = custom_ops.custom_relu(x)
 | |
|         x = self.max_pool1(x)
 | |
|         x = custom_ops.custom_relu(x)
 | |
|         x = self.conv2(x)
 | |
|         x = self.max_pool2(x)
 | |
|         x = paddle.flatten(x, start_axis=1, stop_axis=-1)
 | |
|         x = self.linear1(x)
 | |
|         x = custom_ops.custom_relu(x)
 | |
|         x = self.linear2(x)
 | |
|         x = custom_ops.custom_relu(x)
 | |
|         x = self.linear3(x)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| # set device
 | |
| paddle.set_device("gpu")
 | |
| 
 | |
| # model
 | |
| net = LeNet()
 | |
| loss_fn = nn.CrossEntropyLoss()
 | |
| opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=net.parameters())
 | |
| 
 | |
| # data loader
 | |
| transform = Compose([Normalize(mean=[127.5], std=[127.5], data_format='CHW')])
 | |
| train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
 | |
| train_loader = paddle.io.DataLoader(
 | |
|     train_dataset,
 | |
|     batch_size=BATCH_SIZE,
 | |
|     shuffle=True,
 | |
|     drop_last=True,
 | |
|     num_workers=2)
 | |
| 
 | |
| # train
 | |
| for epoch_id in range(EPOCH_NUM):
 | |
|     for batch_id, (image, label) in enumerate(train_loader()):
 | |
|         out = net(image)
 | |
|         loss = loss_fn(out, label)
 | |
|         loss.backward()
 | |
| 
 | |
|         if batch_id % 300 == 0:
 | |
|             print("Epoch {} batch {}: loss = {}".format(epoch_id, batch_id,
 | |
|                                                         np.mean(loss.numpy())))
 | |
| 
 | |
|         opt.step()
 | |
|         opt.clear_grad()
 | 
