mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-26 21:24:27 +00:00
130 lines
4.5 KiB
Python
130 lines
4.5 KiB
Python
import numpy as np
|
||
import cv2
|
||
|
||
|
||
def shrink_polygon_py(polygon, shrink_ratio):
|
||
"""
|
||
对框进行缩放,返回去的比例为1/shrink_ratio 即可
|
||
"""
|
||
cx = polygon[:, 0].mean()
|
||
cy = polygon[:, 1].mean()
|
||
polygon[:, 0] = cx + (polygon[:, 0] - cx) * shrink_ratio
|
||
polygon[:, 1] = cy + (polygon[:, 1] - cy) * shrink_ratio
|
||
return polygon
|
||
|
||
|
||
def shrink_polygon_pyclipper(polygon, shrink_ratio):
|
||
from shapely.geometry import Polygon
|
||
import pyclipper
|
||
|
||
polygon_shape = Polygon(polygon)
|
||
distance = (
|
||
polygon_shape.area * (1 - np.power(shrink_ratio, 2)) / polygon_shape.length
|
||
)
|
||
subject = [tuple(l) for l in polygon]
|
||
padding = pyclipper.PyclipperOffset()
|
||
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
||
shrunk = padding.Execute(-distance)
|
||
if shrunk == []:
|
||
shrunk = np.array(shrunk)
|
||
else:
|
||
shrunk = np.array(shrunk[0]).reshape(-1, 2)
|
||
return shrunk
|
||
|
||
|
||
class MakeShrinkMap:
|
||
r"""
|
||
Making binary mask from detection data with ICDAR format.
|
||
Typically following the process of class `MakeICDARData`.
|
||
"""
|
||
|
||
def __init__(self, min_text_size=8, shrink_ratio=0.4, shrink_type="pyclipper"):
|
||
shrink_func_dict = {
|
||
"py": shrink_polygon_py,
|
||
"pyclipper": shrink_polygon_pyclipper,
|
||
}
|
||
self.shrink_func = shrink_func_dict[shrink_type]
|
||
self.min_text_size = min_text_size
|
||
self.shrink_ratio = shrink_ratio
|
||
|
||
def __call__(self, data: dict) -> dict:
|
||
"""
|
||
从scales中随机选择一个尺度,对图片和文本框进行缩放
|
||
:param data: {'img':,'text_polys':,'texts':,'ignore_tags':}
|
||
:return:
|
||
"""
|
||
image = data["img"]
|
||
text_polys = data["text_polys"]
|
||
ignore_tags = data["ignore_tags"]
|
||
|
||
h, w = image.shape[:2]
|
||
text_polys, ignore_tags = self.validate_polygons(text_polys, ignore_tags, h, w)
|
||
gt = np.zeros((h, w), dtype=np.float32)
|
||
mask = np.ones((h, w), dtype=np.float32)
|
||
for i in range(len(text_polys)):
|
||
polygon = text_polys[i]
|
||
height = max(polygon[:, 1]) - min(polygon[:, 1])
|
||
width = max(polygon[:, 0]) - min(polygon[:, 0])
|
||
if ignore_tags[i] or min(height, width) < self.min_text_size:
|
||
cv2.fillPoly(mask, polygon.astype(np.int32)[np.newaxis, :, :], 0)
|
||
ignore_tags[i] = True
|
||
else:
|
||
shrunk = self.shrink_func(polygon, self.shrink_ratio)
|
||
if shrunk.size == 0:
|
||
cv2.fillPoly(mask, polygon.astype(np.int32)[np.newaxis, :, :], 0)
|
||
ignore_tags[i] = True
|
||
continue
|
||
cv2.fillPoly(gt, [shrunk.astype(np.int32)], 1)
|
||
|
||
data["shrink_map"] = gt
|
||
data["shrink_mask"] = mask
|
||
return data
|
||
|
||
def validate_polygons(self, polygons, ignore_tags, h, w):
|
||
"""
|
||
polygons (numpy.array, required): of shape (num_instances, num_points, 2)
|
||
"""
|
||
if len(polygons) == 0:
|
||
return polygons, ignore_tags
|
||
assert len(polygons) == len(ignore_tags)
|
||
for polygon in polygons:
|
||
polygon[:, 0] = np.clip(polygon[:, 0], 0, w - 1)
|
||
polygon[:, 1] = np.clip(polygon[:, 1], 0, h - 1)
|
||
|
||
for i in range(len(polygons)):
|
||
area = self.polygon_area(polygons[i])
|
||
if abs(area) < 1:
|
||
ignore_tags[i] = True
|
||
if area > 0:
|
||
polygons[i] = polygons[i][::-1, :]
|
||
return polygons, ignore_tags
|
||
|
||
def polygon_area(self, polygon):
|
||
return cv2.contourArea(polygon)
|
||
# edge = 0
|
||
# for i in range(polygon.shape[0]):
|
||
# next_index = (i + 1) % polygon.shape[0]
|
||
# edge += (polygon[next_index, 0] - polygon[i, 0]) * (polygon[next_index, 1] - polygon[i, 1])
|
||
#
|
||
# return edge / 2.
|
||
|
||
|
||
if __name__ == "__main__":
|
||
from shapely.geometry import Polygon
|
||
import pyclipper
|
||
|
||
polygon = np.array([[0, 0], [100, 10], [100, 100], [10, 90]])
|
||
a = shrink_polygon_py(polygon, 0.4)
|
||
print(a)
|
||
print(shrink_polygon_py(a, 1 / 0.4))
|
||
b = shrink_polygon_pyclipper(polygon, 0.4)
|
||
print(b)
|
||
poly = Polygon(b)
|
||
distance = poly.area * 1.5 / poly.length
|
||
offset = pyclipper.PyclipperOffset()
|
||
offset.AddPath(b, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
||
expanded = np.array(offset.Execute(distance))
|
||
bounding_box = cv2.minAreaRect(expanded)
|
||
points = cv2.boxPoints(bounding_box)
|
||
print(points)
|