mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-04 11:49:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			108 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import json
 | 
						|
 | 
						|
__dir__ = os.path.dirname(os.path.abspath(__file__))
 | 
						|
sys.path.append(__dir__)
 | 
						|
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
 | 
						|
 | 
						|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
 | 
						|
 | 
						|
import paddle
 | 
						|
from paddle.jit import to_static
 | 
						|
 | 
						|
from ppocr.data import create_operators, transform
 | 
						|
from ppocr.modeling.architectures import build_model
 | 
						|
from ppocr.postprocess import build_post_process
 | 
						|
from ppocr.utils.save_load import load_model
 | 
						|
from ppocr.utils.utility import get_image_file_list
 | 
						|
import tools.program as program
 | 
						|
import cv2
 | 
						|
 | 
						|
 | 
						|
def main(config, device, logger, vdl_writer):
 | 
						|
    global_config = config['Global']
 | 
						|
 | 
						|
    # build post process
 | 
						|
    post_process_class = build_post_process(config['PostProcess'],
 | 
						|
                                            global_config)
 | 
						|
 | 
						|
    # build model
 | 
						|
    if hasattr(post_process_class, 'character'):
 | 
						|
        config['Architecture']["Head"]['out_channels'] = len(
 | 
						|
            getattr(post_process_class, 'character'))
 | 
						|
 | 
						|
    model = build_model(config['Architecture'])
 | 
						|
 | 
						|
    load_model(config, model)
 | 
						|
 | 
						|
    # create data ops
 | 
						|
    transforms = []
 | 
						|
    use_padding = False
 | 
						|
    for op in config['Eval']['dataset']['transforms']:
 | 
						|
        op_name = list(op)[0]
 | 
						|
        if 'Label' in op_name:
 | 
						|
            continue
 | 
						|
        if op_name == 'KeepKeys':
 | 
						|
            op[op_name]['keep_keys'] = ['image']
 | 
						|
        if op_name == "ResizeTableImage":
 | 
						|
            use_padding = True
 | 
						|
            padding_max_len = op['ResizeTableImage']['max_len']
 | 
						|
        transforms.append(op)
 | 
						|
 | 
						|
    global_config['infer_mode'] = True
 | 
						|
    ops = create_operators(transforms, global_config)
 | 
						|
 | 
						|
    model.eval()
 | 
						|
    for file in get_image_file_list(config['Global']['infer_img']):
 | 
						|
        logger.info("infer_img: {}".format(file))
 | 
						|
        with open(file, 'rb') as f:
 | 
						|
            img = f.read()
 | 
						|
            data = {'image': img}
 | 
						|
        batch = transform(data, ops)
 | 
						|
        images = np.expand_dims(batch[0], axis=0)
 | 
						|
        images = paddle.to_tensor(images)
 | 
						|
        preds = model(images)
 | 
						|
        post_result = post_process_class(preds)
 | 
						|
        res_html_code = post_result['res_html_code']
 | 
						|
        res_loc = post_result['res_loc']
 | 
						|
        img = cv2.imread(file)
 | 
						|
        imgh, imgw = img.shape[0:2]
 | 
						|
        res_loc_final = []
 | 
						|
        for rno in range(len(res_loc[0])):
 | 
						|
            x0, y0, x1, y1 = res_loc[0][rno]
 | 
						|
            left = max(int(imgw * x0), 0)
 | 
						|
            top = max(int(imgh * y0), 0)
 | 
						|
            right = min(int(imgw * x1), imgw - 1)
 | 
						|
            bottom = min(int(imgh * y1), imgh - 1)
 | 
						|
            cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2)
 | 
						|
            res_loc_final.append([left, top, right, bottom])
 | 
						|
        res_loc_str = json.dumps(res_loc_final)
 | 
						|
        logger.info("result: {}, {}".format(res_html_code, res_loc_final))
 | 
						|
    logger.info("success!")
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    config, device, logger, vdl_writer = program.preprocess()
 | 
						|
    main(config, device, logger, vdl_writer)
 |