mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 01:39:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			334 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			334 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | ||
| #
 | ||
| # Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| # you may not use this file except in compliance with the License.
 | ||
| # You may obtain a copy of the License at
 | ||
| #
 | ||
| #     http://www.apache.org/licenses/LICENSE-2.0
 | ||
| #
 | ||
| # Unless required by applicable law or agreed to in writing, software
 | ||
| # distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| # See the License for the specific language governing permissions and
 | ||
| # limitations under the License.
 | ||
| 
 | ||
| import os
 | ||
| import sys
 | ||
| 
 | ||
| __dir__ = os.path.dirname(__file__)
 | ||
| sys.path.append(os.path.join(__dir__, ''))
 | ||
| 
 | ||
| import cv2
 | ||
| import numpy as np
 | ||
| from pathlib import Path
 | ||
| import tarfile
 | ||
| import requests
 | ||
| from tqdm import tqdm
 | ||
| 
 | ||
| from tools.infer import predict_system
 | ||
| from ppocr.utils.logging import get_logger
 | ||
| 
 | ||
| logger = get_logger()
 | ||
| from ppocr.utils.utility import check_and_read_gif, get_image_file_list
 | ||
| 
 | ||
| __all__ = ['PaddleOCR']
 | ||
| 
 | ||
| model_urls = {
 | ||
|     'det':
 | ||
|         'https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar',
 | ||
|     'rec': {
 | ||
|         'ch': {
 | ||
|             'url':
 | ||
|                 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar',
 | ||
|             'dict_path': './ppocr/utils/ppocr_keys_v1.txt'
 | ||
|         },
 | ||
|         'en': {
 | ||
|             'url':
 | ||
|                 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar',
 | ||
|             'dict_path': './ppocr/utils/ic15_dict.txt'
 | ||
|         },
 | ||
|         'french': {
 | ||
|             'url':
 | ||
|                 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar',
 | ||
|             'dict_path': './ppocr/utils/dict/french_dict.txt'
 | ||
|         },
 | ||
|         'german': {
 | ||
|             'url':
 | ||
|                 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar',
 | ||
|             'dict_path': './ppocr/utils/dict/german_dict.txt'
 | ||
|         },
 | ||
|         'korean': {
 | ||
|             'url':
 | ||
|                 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar',
 | ||
|             'dict_path': './ppocr/utils/dict/korean_dict.txt'
 | ||
|         },
 | ||
|         'japan': {
 | ||
|             'url':
 | ||
|                 'https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar',
 | ||
|             'dict_path': './ppocr/utils/dict/japan_dict.txt'
 | ||
|         }
 | ||
|     },
 | ||
|     'cls':
 | ||
|         'https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar'
 | ||
| }
 | ||
| 
 | ||
| SUPPORT_DET_MODEL = ['DB']
 | ||
| SUPPORT_REC_MODEL = ['CRNN']
 | ||
| BASE_DIR = os.path.expanduser("~/.paddleocr/")
 | ||
| 
 | ||
| 
 | ||
| def download_with_progressbar(url, save_path):
 | ||
|     response = requests.get(url, stream=True)
 | ||
|     total_size_in_bytes = int(response.headers.get('content-length', 0))
 | ||
|     block_size = 1024  # 1 Kibibyte
 | ||
|     progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
 | ||
|     with open(save_path, 'wb') as file:
 | ||
|         for data in response.iter_content(block_size):
 | ||
|             progress_bar.update(len(data))
 | ||
|             file.write(data)
 | ||
|     progress_bar.close()
 | ||
|     if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
 | ||
|         logger.error("Something went wrong while downloading models")
 | ||
|         sys.exit(0)
 | ||
| 
 | ||
| 
 | ||
| def maybe_download(model_storage_directory, url):
 | ||
|     # using custom model
 | ||
|     if not os.path.exists(os.path.join(
 | ||
|             model_storage_directory, 'model')) or not os.path.exists(
 | ||
|         os.path.join(model_storage_directory, 'params')):
 | ||
|         tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
 | ||
|         print('download {} to {}'.format(url, tmp_path))
 | ||
|         os.makedirs(model_storage_directory, exist_ok=True)
 | ||
|         download_with_progressbar(url, tmp_path)
 | ||
|         with tarfile.open(tmp_path, 'r') as tarObj:
 | ||
|             for member in tarObj.getmembers():
 | ||
|                 if "model" in member.name:
 | ||
|                     filename = 'model'
 | ||
|                 elif "params" in member.name:
 | ||
|                     filename = 'params'
 | ||
|                 else:
 | ||
|                     continue
 | ||
|                 file = tarObj.extractfile(member)
 | ||
|                 with open(
 | ||
|                         os.path.join(model_storage_directory, filename),
 | ||
|                         'wb') as f:
 | ||
|                     f.write(file.read())
 | ||
|         os.remove(tmp_path)
 | ||
| 
 | ||
| 
 | ||
| def parse_args(mMain=True, add_help=True):
 | ||
|     import argparse
 | ||
| 
 | ||
|     def str2bool(v):
 | ||
|         return v.lower() in ("true", "t", "1")
 | ||
| 
 | ||
|     if mMain:
 | ||
|         parser = argparse.ArgumentParser(add_help=add_help)
 | ||
|         # params for prediction engine
 | ||
|         parser.add_argument("--use_gpu", type=str2bool, default=True)
 | ||
|         parser.add_argument("--ir_optim", type=str2bool, default=True)
 | ||
|         parser.add_argument("--use_tensorrt", type=str2bool, default=False)
 | ||
|         parser.add_argument("--gpu_mem", type=int, default=8000)
 | ||
| 
 | ||
|         # params for text detector
 | ||
|         parser.add_argument("--image_dir", type=str)
 | ||
|         parser.add_argument("--det_algorithm", type=str, default='DB')
 | ||
|         parser.add_argument("--det_model_dir", type=str, default=None)
 | ||
|         parser.add_argument("--det_limit_side_len", type=float, default=960)
 | ||
|         parser.add_argument("--det_limit_type", type=str, default='max')
 | ||
| 
 | ||
|         # DB parmas
 | ||
|         parser.add_argument("--det_db_thresh", type=float, default=0.3)
 | ||
|         parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
 | ||
|         parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
 | ||
| 
 | ||
|         # EAST parmas
 | ||
|         parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
 | ||
|         parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
 | ||
|         parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
 | ||
| 
 | ||
|         # params for text recognizer
 | ||
|         parser.add_argument("--rec_algorithm", type=str, default='CRNN')
 | ||
|         parser.add_argument("--rec_model_dir", type=str, default=None)
 | ||
|         parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
 | ||
|         parser.add_argument("--rec_char_type", type=str, default='ch')
 | ||
|         parser.add_argument("--rec_batch_num", type=int, default=30)
 | ||
|         parser.add_argument("--max_text_length", type=int, default=25)
 | ||
|         parser.add_argument("--rec_char_dict_path", type=str, default=None)
 | ||
|         parser.add_argument("--use_space_char", type=bool, default=True)
 | ||
|         parser.add_argument("--drop_score", type=float, default=0.5)
 | ||
| 
 | ||
|         # params for text classifier
 | ||
|         parser.add_argument("--cls_model_dir", type=str, default=None)
 | ||
|         parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
 | ||
|         parser.add_argument("--label_list", type=list, default=['0', '180'])
 | ||
|         parser.add_argument("--cls_batch_num", type=int, default=30)
 | ||
|         parser.add_argument("--cls_thresh", type=float, default=0.9)
 | ||
| 
 | ||
|         parser.add_argument("--enable_mkldnn", type=bool, default=False)
 | ||
|         parser.add_argument("--use_zero_copy_run", type=bool, default=False)
 | ||
|         parser.add_argument("--use_pdserving", type=str2bool, default=False)
 | ||
| 
 | ||
|         parser.add_argument("--lang", type=str, default='ch')
 | ||
|         parser.add_argument("--det", type=str2bool, default=True)
 | ||
|         parser.add_argument("--rec", type=str2bool, default=True)
 | ||
|         parser.add_argument("--use_angle_cls", type=str2bool, default=False)
 | ||
|         return parser.parse_args()
 | ||
|     else:
 | ||
|         return argparse.Namespace(use_gpu=True,
 | ||
|                                   ir_optim=True,
 | ||
|                                   use_tensorrt=False,
 | ||
|                                   gpu_mem=8000,
 | ||
|                                   image_dir='',
 | ||
|                                   det_algorithm='DB',
 | ||
|                                   det_model_dir=None,
 | ||
|                                   det_limit_side_len=960,
 | ||
|                                   det_limit_type='max',
 | ||
|                                   det_db_thresh=0.3,
 | ||
|                                   det_db_box_thresh=0.5,
 | ||
|                                   det_db_unclip_ratio=2.0,
 | ||
|                                   det_east_score_thresh=0.8,
 | ||
|                                   det_east_cover_thresh=0.1,
 | ||
|                                   det_east_nms_thresh=0.2,
 | ||
|                                   rec_algorithm='CRNN',
 | ||
|                                   rec_model_dir=None,
 | ||
|                                   rec_image_shape="3, 32, 320",
 | ||
|                                   rec_char_type='ch',
 | ||
|                                   rec_batch_num=30,
 | ||
|                                   max_text_length=25,
 | ||
|                                   rec_char_dict_path=None,
 | ||
|                                   use_space_char=True,
 | ||
|                                   drop_score=0.5,
 | ||
|                                   cls_model_dir=None,
 | ||
|                                   cls_image_shape="3, 48, 192",
 | ||
|                                   label_list=['0', '180'],
 | ||
|                                   cls_batch_num=30,
 | ||
|                                   cls_thresh=0.9,
 | ||
|                                   enable_mkldnn=False,
 | ||
|                                   use_zero_copy_run=False,
 | ||
|                                   use_pdserving=False,
 | ||
|                                   lang='ch',
 | ||
|                                   det=True,
 | ||
|                                   rec=True,
 | ||
|                                   use_angle_cls=False
 | ||
|                                   )
 | ||
| 
 | ||
| 
 | ||
| class PaddleOCR(predict_system.TextSystem):
 | ||
|     def __init__(self, **kwargs):
 | ||
|         """
 | ||
|         paddleocr package
 | ||
|         args:
 | ||
|             **kwargs: other params show in paddleocr --help
 | ||
|         """
 | ||
|         postprocess_params = parse_args(mMain=False, add_help=False)
 | ||
|         postprocess_params.__dict__.update(**kwargs)
 | ||
|         self.use_angle_cls = postprocess_params.use_angle_cls
 | ||
|         lang = postprocess_params.lang
 | ||
|         assert lang in model_urls[
 | ||
|             'rec'], 'param lang must in {}, but got {}'.format(
 | ||
|             model_urls['rec'].keys(), lang)
 | ||
|         if postprocess_params.rec_char_dict_path is None:
 | ||
|             postprocess_params.rec_char_dict_path = model_urls['rec'][lang][
 | ||
|                 'dict_path']
 | ||
| 
 | ||
|         # init model dir
 | ||
|         if postprocess_params.det_model_dir is None:
 | ||
|             postprocess_params.det_model_dir = os.path.join(BASE_DIR, 'det')
 | ||
|         if postprocess_params.rec_model_dir is None:
 | ||
|             postprocess_params.rec_model_dir = os.path.join(
 | ||
|                 BASE_DIR, 'rec/{}'.format(lang))
 | ||
|         if postprocess_params.cls_model_dir is None:
 | ||
|             postprocess_params.cls_model_dir = os.path.join(BASE_DIR, 'cls')
 | ||
|         print(postprocess_params)
 | ||
|         # download model
 | ||
|         maybe_download(postprocess_params.det_model_dir, model_urls['det'])
 | ||
|         maybe_download(postprocess_params.rec_model_dir,
 | ||
|                        model_urls['rec'][lang]['url'])
 | ||
|         maybe_download(postprocess_params.cls_model_dir, model_urls['cls'])
 | ||
| 
 | ||
|         if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
 | ||
|             logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
 | ||
|             sys.exit(0)
 | ||
|         if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
 | ||
|             logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
 | ||
|             sys.exit(0)
 | ||
| 
 | ||
|         postprocess_params.rec_char_dict_path = Path(
 | ||
|             __file__).parent / postprocess_params.rec_char_dict_path
 | ||
| 
 | ||
|         # init det_model and rec_model
 | ||
|         super().__init__(postprocess_params)
 | ||
| 
 | ||
|     def ocr(self, img, det=True, rec=True, cls=False):
 | ||
|         """
 | ||
|         ocr with paddleocr
 | ||
|         args:
 | ||
|             img: img for ocr, support ndarray, img_path and list or ndarray
 | ||
|             det: use text detection or not, if false, only rec will be exec. default is True
 | ||
|             rec: use text recognition or not, if false, only det will be exec. default is True
 | ||
|         """
 | ||
|         assert isinstance(img, (np.ndarray, list, str))
 | ||
|         if isinstance(img, list) and det == True:
 | ||
|             logger.error('When input a list of images, det must be false')
 | ||
|             exit(0)
 | ||
| 
 | ||
|         self.use_angle_cls = cls
 | ||
|         if isinstance(img, str):
 | ||
|             # download net image
 | ||
|             if img.startswith('http'):
 | ||
|                 download_with_progressbar(img, 'tmp.jpg')
 | ||
|                 img = 'tmp.jpg'
 | ||
|             image_file = img
 | ||
|             img, flag = check_and_read_gif(image_file)
 | ||
|             if not flag:
 | ||
|                 img = cv2.imread(image_file)
 | ||
|             if img is None:
 | ||
|                 logger.error("error in loading image:{}".format(image_file))
 | ||
|                 return None
 | ||
|         if isinstance(img, np.ndarray) and len(img.shape) == 2:
 | ||
|             img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
 | ||
|         if det and rec:
 | ||
|             dt_boxes, rec_res = self.__call__(img)
 | ||
|             return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
 | ||
|         elif det and not rec:
 | ||
|             dt_boxes, elapse = self.text_detector(img)
 | ||
|             if dt_boxes is None:
 | ||
|                 return None
 | ||
|             return [box.tolist() for box in dt_boxes]
 | ||
|         else:
 | ||
|             if not isinstance(img, list):
 | ||
|                 img = [img]
 | ||
|             if self.use_angle_cls:
 | ||
|                 img, cls_res, elapse = self.text_classifier(img)
 | ||
|                 if not rec:
 | ||
|                     return cls_res
 | ||
|             rec_res, elapse = self.text_recognizer(img)
 | ||
|             return rec_res
 | ||
| 
 | ||
| 
 | ||
| def main():
 | ||
|     # for cmd
 | ||
|     args = parse_args(mMain=True)
 | ||
|     image_dir = args.image_dir
 | ||
|     if image_dir.startswith('http'):
 | ||
|         download_with_progressbar(image_dir, 'tmp.jpg')
 | ||
|         image_file_list = ['tmp.jpg']
 | ||
|     else:
 | ||
|         image_file_list = get_image_file_list(args.image_dir)
 | ||
|     if len(image_file_list) == 0:
 | ||
|         logger.error('no images find in {}'.format(args.image_dir))
 | ||
|         return
 | ||
| 
 | ||
|     ocr_engine = PaddleOCR(**(args.__dict__))
 | ||
|     for img_path in image_file_list:
 | ||
|         logger.info('{}{}{}'.format('*' * 10, img_path, '*' * 10))
 | ||
|         result = ocr_engine.ocr(img_path,
 | ||
|                                 det=args.det,
 | ||
|                                 rec=args.rec,
 | ||
|                                 cls=args.use_angle_cls)
 | ||
|         if result is not None:
 | ||
|             for line in result:
 | ||
|                 logger.info(line)
 | 
