mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-31 17:59:11 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			83 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import os
 | |
| import sys
 | |
| 
 | |
| __dir__ = os.path.dirname(os.path.abspath(__file__))
 | |
| sys.path.append(__dir__)
 | |
| sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
 | |
| 
 | |
| import argparse
 | |
| 
 | |
| import paddle
 | |
| from paddle.jit import to_static
 | |
| 
 | |
| from ppocr.modeling.architectures import build_model
 | |
| from ppocr.postprocess import build_post_process
 | |
| from ppocr.utils.save_load import init_model
 | |
| from ppocr.utils.logging import get_logger
 | |
| from tools.program import load_config
 | |
| 
 | |
| 
 | |
| def parse_args():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("-c", "--config", help="configuration file to use")
 | |
|     parser.add_argument(
 | |
|         "-o", "--output_path", type=str, default='./output/infer/')
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| class Model(paddle.nn.Layer):
 | |
|     def __init__(self, model):
 | |
|         super(Model, self).__init__()
 | |
|         self.pre_model = model
 | |
| 
 | |
|     # Please modify the 'shape' according to actual needs
 | |
|     @to_static(input_spec=[
 | |
|         paddle.static.InputSpec(
 | |
|             shape=[None, 3, 640, 640], dtype='float32')
 | |
|     ])
 | |
|     def forward(self, inputs):
 | |
|         x = self.pre_model(inputs)
 | |
|         return x
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     FLAGS = parse_args()
 | |
|     config = load_config(FLAGS.config)
 | |
|     logger = get_logger()
 | |
|     # build post process
 | |
|     post_process_class = build_post_process(config['PostProcess'],
 | |
|                                             config['Global'])
 | |
| 
 | |
|     # build model
 | |
|     # for rec algorithm
 | |
|     if hasattr(post_process_class, 'character'):
 | |
|         char_num = len(getattr(post_process_class, 'character'))
 | |
|         config['Architecture']["Head"]['out_channels'] = char_num
 | |
|     model = build_model(config['Architecture'])
 | |
|     init_model(config, model, logger)
 | |
|     model.eval()
 | |
| 
 | |
|     model = Model(model)
 | |
|     save_path = '{}/{}'.format(FLAGS.output_path,
 | |
|                                config['Architecture']['model_type'])
 | |
|     paddle.jit.save(model, save_path)
 | |
|     logger.info('inference model is saved to {}'.format(save_path))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main()
 | 
