mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-07-31 12:48:31 +00:00
101 lines
3.5 KiB
Python
101 lines
3.5 KiB
Python
import numpy as np
|
|
|
|
from .detection.iou import DetectionIoUEvaluator
|
|
|
|
|
|
class AverageMeter(object):
|
|
"""Computes and stores the average and current value"""
|
|
|
|
def __init__(self):
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.val = 0
|
|
self.avg = 0
|
|
self.sum = 0
|
|
self.count = 0
|
|
|
|
def update(self, val, n=1):
|
|
self.val = val
|
|
self.sum += val * n
|
|
self.count += n
|
|
self.avg = self.sum / self.count
|
|
return self
|
|
|
|
|
|
class QuadMetric:
|
|
def __init__(self, is_output_polygon=False):
|
|
self.is_output_polygon = is_output_polygon
|
|
self.evaluator = DetectionIoUEvaluator(is_output_polygon=is_output_polygon)
|
|
|
|
def measure(self, batch, output, box_thresh=0.6):
|
|
"""
|
|
batch: (image, polygons, ignore_tags
|
|
batch: a dict produced by dataloaders.
|
|
image: tensor of shape (N, C, H, W).
|
|
polygons: tensor of shape (N, K, 4, 2), the polygons of objective regions.
|
|
ignore_tags: tensor of shape (N, K), indicates whether a region is ignorable or not.
|
|
shape: the original shape of images.
|
|
filename: the original filenames of images.
|
|
output: (polygons, ...)
|
|
"""
|
|
results = []
|
|
gt_polyons_batch = batch["text_polys"]
|
|
ignore_tags_batch = batch["ignore_tags"]
|
|
pred_polygons_batch = np.array(output[0])
|
|
pred_scores_batch = np.array(output[1])
|
|
for polygons, pred_polygons, pred_scores, ignore_tags in zip(
|
|
gt_polyons_batch, pred_polygons_batch, pred_scores_batch, ignore_tags_batch
|
|
):
|
|
gt = [
|
|
dict(points=np.int64(polygons[i]), ignore=ignore_tags[i])
|
|
for i in range(len(polygons))
|
|
]
|
|
if self.is_output_polygon:
|
|
pred = [
|
|
dict(points=pred_polygons[i]) for i in range(len(pred_polygons))
|
|
]
|
|
else:
|
|
pred = []
|
|
# print(pred_polygons.shape)
|
|
for i in range(pred_polygons.shape[0]):
|
|
if pred_scores[i] >= box_thresh:
|
|
# print(pred_polygons[i,:,:].tolist())
|
|
pred.append(
|
|
dict(points=pred_polygons[i, :, :].astype(np.int32))
|
|
)
|
|
# pred = [dict(points=pred_polygons[i,:,:].tolist()) if pred_scores[i] >= box_thresh for i in range(pred_polygons.shape[0])]
|
|
results.append(self.evaluator.evaluate_image(gt, pred))
|
|
return results
|
|
|
|
def validate_measure(self, batch, output, box_thresh=0.6):
|
|
return self.measure(batch, output, box_thresh)
|
|
|
|
def evaluate_measure(self, batch, output):
|
|
return (
|
|
self.measure(batch, output),
|
|
np.linspace(0, batch["image"].shape[0]).tolist(),
|
|
)
|
|
|
|
def gather_measure(self, raw_metrics):
|
|
raw_metrics = [
|
|
image_metrics
|
|
for batch_metrics in raw_metrics
|
|
for image_metrics in batch_metrics
|
|
]
|
|
|
|
result = self.evaluator.combine_results(raw_metrics)
|
|
|
|
precision = AverageMeter()
|
|
recall = AverageMeter()
|
|
fmeasure = AverageMeter()
|
|
|
|
precision.update(result["precision"], n=len(raw_metrics))
|
|
recall.update(result["recall"], n=len(raw_metrics))
|
|
fmeasure_score = (
|
|
2 * precision.val * recall.val / (precision.val + recall.val + 1e-8)
|
|
)
|
|
fmeasure.update(fmeasure_score)
|
|
|
|
return {"precision": precision, "recall": recall, "fmeasure": fmeasure}
|