mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-11-03 19:29:18 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			171 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
import os
 | 
						|
import sys
 | 
						|
 | 
						|
__dir__ = os.path.dirname(os.path.abspath(__file__))
 | 
						|
sys.path.append(__dir__)
 | 
						|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
 | 
						|
 | 
						|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
 | 
						|
 | 
						|
import cv2
 | 
						|
import numpy as np
 | 
						|
import time
 | 
						|
import sys
 | 
						|
 | 
						|
import tools.infer.utility as utility
 | 
						|
from ppocr.utils.logging import get_logger
 | 
						|
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
 | 
						|
from ppocr.data import create_operators, transform
 | 
						|
from ppocr.postprocess import build_post_process
 | 
						|
 | 
						|
logger = get_logger()
 | 
						|
 | 
						|
 | 
						|
class TextE2E(object):
 | 
						|
    def __init__(self, args):
 | 
						|
        self.args = args
 | 
						|
        self.e2e_algorithm = args.e2e_algorithm
 | 
						|
        self.use_onnx = args.use_onnx
 | 
						|
        pre_process_list = [{
 | 
						|
            'E2EResizeForTest': {}
 | 
						|
        }, {
 | 
						|
            'NormalizeImage': {
 | 
						|
                'std': [0.229, 0.224, 0.225],
 | 
						|
                'mean': [0.485, 0.456, 0.406],
 | 
						|
                'scale': '1./255.',
 | 
						|
                'order': 'hwc'
 | 
						|
            }
 | 
						|
        }, {
 | 
						|
            'ToCHWImage': None
 | 
						|
        }, {
 | 
						|
            'KeepKeys': {
 | 
						|
                'keep_keys': ['image', 'shape']
 | 
						|
            }
 | 
						|
        }]
 | 
						|
        postprocess_params = {}
 | 
						|
        if self.e2e_algorithm == "PGNet":
 | 
						|
            pre_process_list[0] = {
 | 
						|
                'E2EResizeForTest': {
 | 
						|
                    'max_side_len': args.e2e_limit_side_len,
 | 
						|
                    'valid_set': 'totaltext'
 | 
						|
                }
 | 
						|
            }
 | 
						|
            postprocess_params['name'] = 'PGPostProcess'
 | 
						|
            postprocess_params["score_thresh"] = args.e2e_pgnet_score_thresh
 | 
						|
            postprocess_params["character_dict_path"] = args.e2e_char_dict_path
 | 
						|
            postprocess_params["valid_set"] = args.e2e_pgnet_valid_set
 | 
						|
            postprocess_params["mode"] = args.e2e_pgnet_mode
 | 
						|
            self.e2e_pgnet_polygon = args.e2e_pgnet_polygon
 | 
						|
        else:
 | 
						|
            logger.info("unknown e2e_algorithm:{}".format(self.e2e_algorithm))
 | 
						|
            sys.exit(0)
 | 
						|
 | 
						|
        self.preprocess_op = create_operators(pre_process_list)
 | 
						|
        self.postprocess_op = build_post_process(postprocess_params)
 | 
						|
        self.predictor, self.input_tensor, self.output_tensors, _ = utility.create_predictor(
 | 
						|
            args, 'e2e', logger)  # paddle.jit.load(args.det_model_dir)
 | 
						|
        # self.predictor.eval()
 | 
						|
 | 
						|
    def clip_det_res(self, points, img_height, img_width):
 | 
						|
        for pno in range(points.shape[0]):
 | 
						|
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
 | 
						|
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
 | 
						|
        return points
 | 
						|
 | 
						|
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
 | 
						|
        img_height, img_width = image_shape[0:2]
 | 
						|
        dt_boxes_new = []
 | 
						|
        for box in dt_boxes:
 | 
						|
            box = self.clip_det_res(box, img_height, img_width)
 | 
						|
            dt_boxes_new.append(box)
 | 
						|
        dt_boxes = np.array(dt_boxes_new)
 | 
						|
        return dt_boxes
 | 
						|
 | 
						|
    def __call__(self, img):
 | 
						|
 | 
						|
        ori_im = img.copy()
 | 
						|
        data = {'image': img}
 | 
						|
        data = transform(data, self.preprocess_op)
 | 
						|
        img, shape_list = data
 | 
						|
        if img is None:
 | 
						|
            return None, 0
 | 
						|
        img = np.expand_dims(img, axis=0)
 | 
						|
        shape_list = np.expand_dims(shape_list, axis=0)
 | 
						|
        img = img.copy()
 | 
						|
        starttime = time.time()
 | 
						|
 | 
						|
        if self.use_onnx:
 | 
						|
            input_dict = {}
 | 
						|
            input_dict[self.input_tensor.name] = img
 | 
						|
            outputs = self.predictor.run(self.output_tensors, input_dict)
 | 
						|
            preds = {}
 | 
						|
            preds['f_border'] = outputs[0]
 | 
						|
            preds['f_char'] = outputs[1]
 | 
						|
            preds['f_direction'] = outputs[2]
 | 
						|
            preds['f_score'] = outputs[3]
 | 
						|
        else:
 | 
						|
            self.input_tensor.copy_from_cpu(img)
 | 
						|
            self.predictor.run()
 | 
						|
            outputs = []
 | 
						|
            for output_tensor in self.output_tensors:
 | 
						|
                output = output_tensor.copy_to_cpu()
 | 
						|
                outputs.append(output)
 | 
						|
 | 
						|
            preds = {}
 | 
						|
            if self.e2e_algorithm == 'PGNet':
 | 
						|
                preds['f_border'] = outputs[0]
 | 
						|
                preds['f_char'] = outputs[1]
 | 
						|
                preds['f_direction'] = outputs[2]
 | 
						|
                preds['f_score'] = outputs[3]
 | 
						|
            else:
 | 
						|
                raise NotImplementedError
 | 
						|
        post_result = self.postprocess_op(preds, shape_list)
 | 
						|
        points, strs = post_result['points'], post_result['texts']
 | 
						|
        dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape)
 | 
						|
        elapse = time.time() - starttime
 | 
						|
        return dt_boxes, strs, elapse
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    args = utility.parse_args()
 | 
						|
    image_file_list = get_image_file_list(args.image_dir)
 | 
						|
    text_detector = TextE2E(args)
 | 
						|
    count = 0
 | 
						|
    total_time = 0
 | 
						|
    draw_img_save = "./inference_results"
 | 
						|
    if not os.path.exists(draw_img_save):
 | 
						|
        os.makedirs(draw_img_save)
 | 
						|
    for image_file in image_file_list:
 | 
						|
        img, flag = check_and_read_gif(image_file)
 | 
						|
        if not flag:
 | 
						|
            img = cv2.imread(image_file)
 | 
						|
        if img is None:
 | 
						|
            logger.info("error in loading image:{}".format(image_file))
 | 
						|
            continue
 | 
						|
        points, strs, elapse = text_detector(img)
 | 
						|
        if count > 0:
 | 
						|
            total_time += elapse
 | 
						|
        count += 1
 | 
						|
        logger.info("Predict time of {}: {}".format(image_file, elapse))
 | 
						|
        src_im = utility.draw_e2e_res(points, strs, image_file)
 | 
						|
        img_name_pure = os.path.split(image_file)[-1]
 | 
						|
        img_path = os.path.join(draw_img_save,
 | 
						|
                                "e2e_res_{}".format(img_name_pure))
 | 
						|
        cv2.imwrite(img_path, src_im)
 | 
						|
        logger.info("The visualized image saved in {}".format(img_path))
 | 
						|
    if count > 1:
 | 
						|
        logger.info("Avg Time: {}".format(total_time / (count - 1)))
 |