mirror of
				https://github.com/PaddlePaddle/PaddleOCR.git
				synced 2025-10-30 17:29:13 +00:00 
			
		
		
		
	 b25dcaae0e
			
		
	
	
		b25dcaae0e
		
			
		
	
	
	
	
		
			
			* Add serving and hpi docs * Optimize CLI logging info * Update interface * Add on-device deployment and onnx model conversion docs * Enhance CLI * _gen->_iter * Fix CLI help message * Update table_recognition_v2 and PP-StructureV3 interfaces * Update installation doc * Update interface * Update interface * Add logging doc * Update default values --------- Co-authored-by: cuicheng01 <45199522+cuicheng01@users.noreply.github.com>
		
			
				
	
	
		
			284 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			284 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from .._utils.cli import (
 | |
|     add_simple_inference_args,
 | |
|     get_subcommand_args,
 | |
|     perform_simple_inference,
 | |
|     str2bool,
 | |
| )
 | |
| from .base import PaddleXPipelineWrapper, PipelineCLISubcommandExecutor
 | |
| from .utils import create_config_from_structure
 | |
| 
 | |
| 
 | |
| class FormulaRecognitionPipeline(PaddleXPipelineWrapper):
 | |
|     def __init__(
 | |
|         self,
 | |
|         doc_orientation_classify_model_name=None,
 | |
|         doc_orientation_classify_model_dir=None,
 | |
|         doc_orientation_classify_batch_size=None,
 | |
|         doc_unwarping_model_name=None,
 | |
|         doc_unwarping_model_dir=None,
 | |
|         doc_unwarping_batch_size=None,
 | |
|         use_doc_orientation_classify=None,
 | |
|         use_doc_unwarping=None,
 | |
|         layout_detection_model_name=None,
 | |
|         layout_detection_model_dir=None,
 | |
|         layout_threshold=None,
 | |
|         layout_nms=None,
 | |
|         layout_unclip_ratio=None,
 | |
|         layout_merge_bboxes_mode=None,
 | |
|         layout_detection_batch_size=None,
 | |
|         use_layout_detection=None,
 | |
|         formula_recognition_model_name=None,
 | |
|         formula_recognition_model_dir=None,
 | |
|         formula_recognition_batch_size=None,
 | |
|         **kwargs,
 | |
|     ):
 | |
|         params = locals().copy()
 | |
|         params.pop("self")
 | |
|         params.pop("kwargs")
 | |
|         self._params = params
 | |
| 
 | |
|         super().__init__(**kwargs)
 | |
| 
 | |
|     @property
 | |
|     def _paddlex_pipeline_name(self):
 | |
|         return "formula_recognition"
 | |
| 
 | |
|     def predict_iter(
 | |
|         self,
 | |
|         input,
 | |
|         *,
 | |
|         use_layout_detection=None,
 | |
|         use_doc_orientation_classify=None,
 | |
|         use_doc_unwarping=None,
 | |
|         layout_det_res=None,
 | |
|         layout_threshold=None,
 | |
|         layout_nms=None,
 | |
|         layout_unclip_ratio=None,
 | |
|         layout_merge_bboxes_mode=None,
 | |
|         **kwargs,
 | |
|     ):
 | |
|         return self.paddlex_pipeline.predict(
 | |
|             input,
 | |
|             use_layout_detection=use_layout_detection,
 | |
|             use_doc_orientation_classify=use_doc_orientation_classify,
 | |
|             use_doc_unwarping=use_doc_unwarping,
 | |
|             layout_det_res=layout_det_res,
 | |
|             layout_threshold=layout_threshold,
 | |
|             layout_nms=layout_nms,
 | |
|             layout_unclip_ratio=layout_unclip_ratio,
 | |
|             layout_merge_bboxes_mode=layout_merge_bboxes_mode,
 | |
|             **kwargs,
 | |
|         )
 | |
| 
 | |
|     def predict(
 | |
|         self,
 | |
|         input,
 | |
|         *,
 | |
|         use_layout_detection=None,
 | |
|         use_doc_orientation_classify=None,
 | |
|         use_doc_unwarping=None,
 | |
|         layout_det_res=None,
 | |
|         layout_threshold=None,
 | |
|         layout_nms=None,
 | |
|         layout_unclip_ratio=None,
 | |
|         layout_merge_bboxes_mode=None,
 | |
|         **kwargs,
 | |
|     ):
 | |
|         return list(
 | |
|             self.predict_iter(
 | |
|                 input,
 | |
|                 use_layout_detection=use_layout_detection,
 | |
|                 use_doc_orientation_classify=use_doc_orientation_classify,
 | |
|                 use_doc_unwarping=use_doc_unwarping,
 | |
|                 layout_det_res=layout_det_res,
 | |
|                 layout_threshold=layout_threshold,
 | |
|                 layout_nms=layout_nms,
 | |
|                 layout_unclip_ratio=layout_unclip_ratio,
 | |
|                 layout_merge_bboxes_mode=layout_merge_bboxes_mode,
 | |
|                 **kwargs,
 | |
|             )
 | |
|         )
 | |
| 
 | |
|     @classmethod
 | |
|     def get_cli_subcommand_executor(cls):
 | |
|         return FormulaRecognitionPipelineCLISubcommandExecutor()
 | |
| 
 | |
|     def _get_paddlex_config_overrides(self):
 | |
|         STRUCTURE = {
 | |
|             "use_layout_detection": self._params["use_layout_detection"],
 | |
|             "SubModules.LayoutDetection.model_name": self._params[
 | |
|                 "layout_detection_model_name"
 | |
|             ],
 | |
|             "SubModules.LayoutDetection.model_dir": self._params[
 | |
|                 "layout_detection_model_dir"
 | |
|             ],
 | |
|             "SubModules.LayoutDetection.threshold": self._params["layout_threshold"],
 | |
|             "SubModules.LayoutDetection.layout_nms": self._params["layout_nms"],
 | |
|             "SubModules.LayoutDetection.layout_unclip_ratio": self._params[
 | |
|                 "layout_unclip_ratio"
 | |
|             ],
 | |
|             "SubModules.LayoutDetection.layout_merge_bboxes_mode": self._params[
 | |
|                 "layout_merge_bboxes_mode"
 | |
|             ],
 | |
|             "SubModules.LayoutDetection.batch_size": self._params[
 | |
|                 "layout_detection_batch_size"
 | |
|             ],
 | |
|             "SubModules.FormulaRecognition.model_name": self._params[
 | |
|                 "formula_recognition_model_name"
 | |
|             ],
 | |
|             "SubModules.FormulaRecognition.model_dir": self._params[
 | |
|                 "formula_recognition_model_dir"
 | |
|             ],
 | |
|             "SubModules.FormulaRecognition.batch_size": self._params[
 | |
|                 "formula_recognition_batch_size"
 | |
|             ],
 | |
|             "SubPipelines.DocPreprocessor.use_doc_orientation_classify": self._params[
 | |
|                 "use_doc_orientation_classify"
 | |
|             ],
 | |
|             "SubPipelines.DocPreprocessor.use_doc_unwarping": self._params[
 | |
|                 "use_doc_unwarping"
 | |
|             ],
 | |
|             "SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_name": self._params[
 | |
|                 "doc_orientation_classify_model_name"
 | |
|             ],
 | |
|             "SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_dir": self._params[
 | |
|                 "doc_orientation_classify_model_dir"
 | |
|             ],
 | |
|             "SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.batch_size": self._params[
 | |
|                 "doc_orientation_classify_batch_size"
 | |
|             ],
 | |
|             "SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_name": self._params[
 | |
|                 "doc_unwarping_model_name"
 | |
|             ],
 | |
|             "SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_dir": self._params[
 | |
|                 "doc_unwarping_model_dir"
 | |
|             ],
 | |
|             "SubPipelines.DocPreprocessor.SubModules.DocUnwarping.batch_size": self._params[
 | |
|                 "doc_unwarping_batch_size"
 | |
|             ],
 | |
|         }
 | |
|         return create_config_from_structure(STRUCTURE)
 | |
| 
 | |
| 
 | |
| class FormulaRecognitionPipelineCLISubcommandExecutor(PipelineCLISubcommandExecutor):
 | |
|     @property
 | |
|     def subparser_name(self):
 | |
|         return "formula_recognition_pipeline"
 | |
| 
 | |
|     def _update_subparser(self, subparser):
 | |
|         add_simple_inference_args(subparser)
 | |
| 
 | |
|         subparser.add_argument(
 | |
|             "--doc_orientation_classify_model_name",
 | |
|             type=str,
 | |
|             help="Name of the document image orientation classification model.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--doc_orientation_classify_model_dir",
 | |
|             type=str,
 | |
|             help="Directory of the document image orientation classification model.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--doc_orientation_classify_batch_size",
 | |
|             type=int,
 | |
|             help="Batch size for document image orientation classification.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--doc_unwarping_model_name",
 | |
|             type=str,
 | |
|             help="Name of the document unwarping model.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--doc_unwarping_model_dir",
 | |
|             type=str,
 | |
|             help="Directory of the document unwarping model.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--doc_unwarping_batch_size",
 | |
|             type=int,
 | |
|             help="Batch size for document unwarping.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--use_doc_orientation_classify",
 | |
|             type=str2bool,
 | |
|             help="Use document image orientation classification.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--use_doc_unwarping",
 | |
|             type=str2bool,
 | |
|             help="Use document unwarping.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--layout_detection_model_name",
 | |
|             type=str,
 | |
|             help="Name of the layout detection model.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--layout_detection_model_dir",
 | |
|             type=str,
 | |
|             help="Directory of the layout detection model.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--layout_threshold",
 | |
|             type=float,
 | |
|             help="Threshold for layout detection.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--layout_nms",
 | |
|             type=str2bool,
 | |
|             help="Non-maximum suppression for layout detection.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--layout_unclip_ratio",
 | |
|             type=float,
 | |
|             help="Unclip ratio for layout detection.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--layout_merge_bboxes_mode",
 | |
|             type=str,
 | |
|             help="Mode for merging bounding boxes in layout detection.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--layout_detection_batch_size",
 | |
|             type=int,
 | |
|             help="Batch size for layout detection.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--use_layout_detection",
 | |
|             type=str2bool,
 | |
|             help="Use layout detection.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--formula_recognition_model_name",
 | |
|             type=str,
 | |
|             help="Name of the formula recognition model.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--formula_recognition_model_dir",
 | |
|             type=str,
 | |
|             help="Directory of the formula recognition model.",
 | |
|         )
 | |
|         subparser.add_argument(
 | |
|             "--formula_recognition_batch_size",
 | |
|             type=int,
 | |
|             help="Batch size for formula recognition.",
 | |
|         )
 | |
| 
 | |
|     def execute_with_args(self, args):
 | |
|         params = get_subcommand_args(args)
 | |
|         perform_simple_inference(FormulaRecognitionPipeline, params)
 |