optimized yfin fetching to be much faster

This commit is contained in:
Edward Sun 2025-10-06 19:58:01 -07:00
parent 32be17c606
commit 7bb2941b07
2 changed files with 130 additions and 10 deletions

11
test.py Normal file
View File

@ -0,0 +1,11 @@
import time
from tradingagents.dataflows.y_finance import get_YFin_data_online, get_stock_stats_indicators_window, get_balance_sheet as get_yfinance_balance_sheet, get_cashflow as get_yfinance_cashflow, get_income_statement as get_yfinance_income_statement, get_insider_transactions as get_yfinance_insider_transactions
print("Testing optimized implementation with 30-day lookback:")
start_time = time.time()
result = get_stock_stats_indicators_window("AAPL", "macd", "2024-11-01", 30)
end_time = time.time()
print(f"Execution time: {end_time - start_time:.2f} seconds")
print(f"Result length: {len(result)} characters")
print(result)

View File

@ -137,16 +137,42 @@ def get_stock_stats_indicators_window(
curr_date_dt = datetime.strptime(curr_date, "%Y-%m-%d")
before = curr_date_dt - relativedelta(days=look_back_days)
# online gathering only
ind_string = ""
while curr_date_dt >= before:
indicator_value = get_stockstats_indicator(
symbol, indicator, curr_date_dt.strftime("%Y-%m-%d")
)
ind_string += f"{curr_date_dt.strftime('%Y-%m-%d')}: {indicator_value}\n"
curr_date_dt = curr_date_dt - relativedelta(days=1)
# Optimized: Get stock data once and calculate indicators for all dates
try:
indicator_data = _get_stock_stats_bulk(symbol, indicator, curr_date)
# Generate the date range we need
current_dt = curr_date_dt
date_values = []
while current_dt >= before:
date_str = current_dt.strftime('%Y-%m-%d')
# Look up the indicator value for this date
if date_str in indicator_data:
indicator_value = indicator_data[date_str]
else:
indicator_value = "N/A: Not a trading day (weekend or holiday)"
date_values.append((date_str, indicator_value))
current_dt = current_dt - relativedelta(days=1)
# Build the result string
ind_string = ""
for date_str, value in date_values:
ind_string += f"{date_str}: {value}\n"
except Exception as e:
print(f"Error getting bulk stockstats data: {e}")
# Fallback to original implementation if bulk method fails
ind_string = ""
curr_date_dt = datetime.strptime(curr_date, "%Y-%m-%d")
while curr_date_dt >= before:
indicator_value = get_stockstats_indicator(
symbol, indicator, curr_date_dt.strftime("%Y-%m-%d")
)
ind_string += f"{curr_date_dt.strftime('%Y-%m-%d')}: {indicator_value}\n"
curr_date_dt = curr_date_dt - relativedelta(days=1)
result_str = (
f"## {indicator} values from {before.strftime('%Y-%m-%d')} to {end_date}:\n\n"
@ -158,6 +184,89 @@ def get_stock_stats_indicators_window(
return result_str
def _get_stock_stats_bulk(
symbol: Annotated[str, "ticker symbol of the company"],
indicator: Annotated[str, "technical indicator to calculate"],
curr_date: Annotated[str, "current date for reference"]
) -> dict:
"""
Optimized bulk calculation of stock stats indicators.
Fetches data once and calculates indicator for all available dates.
Returns dict mapping date strings to indicator values.
"""
from .config import get_config
import pandas as pd
from stockstats import wrap
import os
config = get_config()
online = config["data_vendors"]["technical_indicators"] != "local"
if not online:
# Local data path
try:
data = pd.read_csv(
os.path.join(
config.get("data_cache_dir", "data"),
f"{symbol}-YFin-data-2015-01-01-2025-03-25.csv",
)
)
df = wrap(data)
except FileNotFoundError:
raise Exception("Stockstats fail: Yahoo Finance data not fetched yet!")
else:
# Online data fetching with caching
today_date = pd.Timestamp.today()
curr_date_dt = pd.to_datetime(curr_date)
end_date = today_date
start_date = today_date - pd.DateOffset(years=15)
start_date_str = start_date.strftime("%Y-%m-%d")
end_date_str = end_date.strftime("%Y-%m-%d")
os.makedirs(config["data_cache_dir"], exist_ok=True)
data_file = os.path.join(
config["data_cache_dir"],
f"{symbol}-YFin-data-{start_date_str}-{end_date_str}.csv",
)
if os.path.exists(data_file):
data = pd.read_csv(data_file)
data["Date"] = pd.to_datetime(data["Date"])
else:
data = yf.download(
symbol,
start=start_date_str,
end=end_date_str,
multi_level_index=False,
progress=False,
auto_adjust=True,
)
data = data.reset_index()
data.to_csv(data_file, index=False)
df = wrap(data)
df["Date"] = df["Date"].dt.strftime("%Y-%m-%d")
# Calculate the indicator for all rows at once
df[indicator] # This triggers stockstats to calculate the indicator
# Create a dictionary mapping date strings to indicator values
result_dict = {}
for _, row in df.iterrows():
date_str = row["Date"]
indicator_value = row[indicator]
# Handle NaN/None values
if pd.isna(indicator_value):
result_dict[date_str] = "N/A"
else:
result_dict[date_str] = str(indicator_value)
return result_dict
def get_stockstats_indicator(
symbol: Annotated[str, "ticker symbol of the company"],
indicator: Annotated[str, "technical indicator to get the analysis and report of"],