import questionary from typing import List, Optional, Tuple, Dict from cli.models import AnalystType ANALYST_ORDER = [ ("Market Analyst", AnalystType.MARKET), ("Social Media Analyst", AnalystType.SOCIAL), ("News Analyst", AnalystType.NEWS), ("Fundamentals Analyst", AnalystType.FUNDAMENTALS), ] def get_ticker() -> str: """Prompt the user to enter a ticker symbol.""" ticker = questionary.text( "Enter the ticker symbol to analyze:", validate=lambda x: len(x.strip()) > 0 or "Please enter a valid ticker symbol.", style=questionary.Style( [ ("text", "fg:green"), ("highlighted", "noinherit"), ] ), ).ask() if not ticker: console.print("\n[red]No ticker symbol provided. Exiting...[/red]") exit(1) return ticker.strip().upper() def get_analysis_date() -> str: """Prompt the user to enter a date in YYYY-MM-DD format.""" import re from datetime import datetime def validate_date(date_str: str) -> bool: if not re.match(r"^\d{4}-\d{2}-\d{2}$", date_str): return False try: datetime.strptime(date_str, "%Y-%m-%d") return True except ValueError: return False date = questionary.text( "Enter the analysis date (YYYY-MM-DD):", validate=lambda x: validate_date(x.strip()) or "Please enter a valid date in YYYY-MM-DD format.", style=questionary.Style( [ ("text", "fg:green"), ("highlighted", "noinherit"), ] ), ).ask() if not date: console.print("\n[red]No date provided. Exiting...[/red]") exit(1) return date.strip() def select_analysts() -> List[AnalystType]: """Select analysts using an interactive checkbox.""" choices = questionary.checkbox( "Select Your [Analysts Team]:", choices=[ questionary.Choice(display, value=value) for display, value in ANALYST_ORDER ], instruction="\n- Press Space to select/unselect analysts\n- Press 'a' to select/unselect all\n- Press Enter when done", validate=lambda x: len(x) > 0 or "You must select at least one analyst.", style=questionary.Style( [ ("checkbox-selected", "fg:green"), ("selected", "fg:green noinherit"), ("highlighted", "noinherit"), ("pointer", "noinherit"), ] ), ).ask() if not choices: console.print("\n[red]No analysts selected. Exiting...[/red]") exit(1) return choices def select_research_depth() -> int: """Select research depth using an interactive selection.""" # Define research depth options with their corresponding values DEPTH_OPTIONS = [ ("Shallow - Quick research, few debate and strategy discussion rounds", 1), ("Medium - Middle ground, moderate debate rounds and strategy discussion", 3), ("Deep - Comprehensive research, in depth debate and strategy discussion", 5), ] choice = questionary.select( "Select Your [Research Depth]:", choices=[ questionary.Choice(display, value=value) for display, value in DEPTH_OPTIONS ], instruction="\n- Use arrow keys to navigate\n- Press Enter to select", style=questionary.Style( [ ("selected", "fg:yellow noinherit"), ("highlighted", "fg:yellow noinherit"), ("pointer", "fg:yellow noinherit"), ] ), ).ask() if choice is None: console.print("\n[red]No research depth selected. Exiting...[/red]") exit(1) return choice def select_shallow_thinking_agent() -> str: """Select shallow thinking llm engine using an interactive selection.""" # Define shallow thinking llm engine options with their corresponding model names SHALLOW_AGENT_OPTIONS = [ ("GPT-4o-mini - Fast and efficient for quick tasks", "gpt-4o-mini"), ("GPT-4.1-nano - Ultra-lightweight model for basic operations", "gpt-4.1-nano"), ("GPT-4.1-mini - Compact model with good performance", "gpt-4.1-mini"), ("GPT-4o - Standard model with solid capabilities", "gpt-4o"), ] choice = questionary.select( "Select Your [Quick-Thinking LLM Engine]:", choices=[ questionary.Choice(display, value=value) for display, value in SHALLOW_AGENT_OPTIONS ], instruction="\n- Use arrow keys to navigate\n- Press Enter to select", style=questionary.Style( [ ("selected", "fg:magenta noinherit"), ("highlighted", "fg:magenta noinherit"), ("pointer", "fg:magenta noinherit"), ] ), ).ask() if choice is None: console.print( "\n[red]No shallow thinking llm engine selected. Exiting...[/red]" ) exit(1) return choice def select_deep_thinking_agent() -> str: """Select deep thinking llm engine using an interactive selection.""" # Define deep thinking llm engine options with their corresponding model names DEEP_AGENT_OPTIONS = [ ("GPT-4.1-nano - Ultra-lightweight model for basic operations", "gpt-4.1-nano"), ("GPT-4.1-mini - Compact model with good performance", "gpt-4.1-mini"), ("GPT-4o - Standard model with solid capabilities", "gpt-4o"), ("o4-mini - Specialized reasoning model (compact)", "o4-mini"), ("o3-mini - Advanced reasoning model (lightweight)", "o3-mini"), ("o3 - Full advanced reasoning model", "o3"), ("o1 - Premier reasoning and problem-solving model", "o1"), ] choice = questionary.select( "Select Your [Deep-Thinking LLM Engine]:", choices=[ questionary.Choice(display, value=value) for display, value in DEEP_AGENT_OPTIONS ], instruction="\n- Use arrow keys to navigate\n- Press Enter to select", style=questionary.Style( [ ("selected", "fg:magenta noinherit"), ("highlighted", "fg:magenta noinherit"), ("pointer", "fg:magenta noinherit"), ] ), ).ask() if choice is None: console.print("\n[red]No deep thinking llm engine selected. Exiting...[/red]") exit(1) return choice