from tradingagents.graph.trading_graph import TradingAgentsGraph from tradingagents.default_config import DEFAULT_CONFIG from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() # Create a custom config config = DEFAULT_CONFIG.copy() config["llm_provider"] = "google" # Use a different model config["backend_url"] = "https://generativelanguage.googleapis.com/v1" # Use a different backend config["deep_think_llm"] = "gemini-2.0-flash" # Use a different model config["quick_think_llm"] = "gemini-2.0-flash" # Use a different model config["max_debate_rounds"] = 1 # Increase debate rounds # Configure data vendors (default uses Alpha Vantage for real-time data) config["data_vendors"] = { "core_stock_apis": "alpha_vantage", # Options: alpha_vantage, yahoo_finance, local "technical_indicators": "alpha_vantage", # Options: alpha_vantage, yahoo_finance, local "fundamental_data": "alpha_vantage", # Options: alpha_vantage, openai, local "news_data": "alpha_vantage", # Options: alpha_vantage, openai, google, local } # Initialize with custom config ta = TradingAgentsGraph(debug=True, config=config) # forward propagate _, decision = ta.propagate("NVDA", "2024-05-10") print(decision) # Memorize mistakes and reflect # ta.reflect_and_remember(1000) # parameter is the position returns