TradingAgents/cli/utils.py

196 lines
6.4 KiB
Python

import questionary
from typing import List, Optional, Tuple, Dict
from cli.models import AnalystType
ANALYST_ORDER = [
("Market Analyst", AnalystType.MARKET),
("Social Media Analyst", AnalystType.SOCIAL),
("News Analyst", AnalystType.NEWS),
("Fundamentals Analyst", AnalystType.FUNDAMENTALS),
]
def get_ticker() -> str:
"""Prompt the user to enter a ticker symbol."""
ticker = questionary.text(
"Enter the ticker symbol to analyze:",
validate=lambda x: len(x.strip()) > 0 or "Please enter a valid ticker symbol.",
style=questionary.Style(
[
("text", "fg:green"),
("highlighted", "noinherit"),
]
),
).ask()
if not ticker:
console.print("\n[red]No ticker symbol provided. Exiting...[/red]")
exit(1)
return ticker.strip().upper()
def get_analysis_date() -> str:
"""Prompt the user to enter a date in YYYY-MM-DD format."""
import re
from datetime import datetime
def validate_date(date_str: str) -> bool:
if not re.match(r"^\d{4}-\d{2}-\d{2}$", date_str):
return False
try:
datetime.strptime(date_str, "%Y-%m-%d")
return True
except ValueError:
return False
date = questionary.text(
"Enter the analysis date (YYYY-MM-DD):",
validate=lambda x: validate_date(x.strip())
or "Please enter a valid date in YYYY-MM-DD format.",
style=questionary.Style(
[
("text", "fg:green"),
("highlighted", "noinherit"),
]
),
).ask()
if not date:
console.print("\n[red]No date provided. Exiting...[/red]")
exit(1)
return date.strip()
def select_analysts() -> List[AnalystType]:
"""Select analysts using an interactive checkbox."""
choices = questionary.checkbox(
"Select Your [Analysts Team]:",
choices=[
questionary.Choice(display, value=value) for display, value in ANALYST_ORDER
],
instruction="\n- Press Space to select/unselect analysts\n- Press 'a' to select/unselect all\n- Press Enter when done",
validate=lambda x: len(x) > 0 or "You must select at least one analyst.",
style=questionary.Style(
[
("checkbox-selected", "fg:green"),
("selected", "fg:green noinherit"),
("highlighted", "noinherit"),
("pointer", "noinherit"),
]
),
).ask()
if not choices:
console.print("\n[red]No analysts selected. Exiting...[/red]")
exit(1)
return choices
def select_research_depth() -> int:
"""Select research depth using an interactive selection."""
# Define research depth options with their corresponding values
DEPTH_OPTIONS = [
("Shallow - Quick research, few debate and strategy discussion rounds", 1),
("Medium - Middle ground, moderate debate rounds and strategy discussion", 3),
("Deep - Comprehensive research, in depth debate and strategy discussion", 5),
]
choice = questionary.select(
"Select Your [Research Depth]:",
choices=[
questionary.Choice(display, value=value) for display, value in DEPTH_OPTIONS
],
instruction="\n- Use arrow keys to navigate\n- Press Enter to select",
style=questionary.Style(
[
("selected", "fg:yellow noinherit"),
("highlighted", "fg:yellow noinherit"),
("pointer", "fg:yellow noinherit"),
]
),
).ask()
if choice is None:
console.print("\n[red]No research depth selected. Exiting...[/red]")
exit(1)
return choice
def select_shallow_thinking_agent() -> str:
"""Select shallow thinking llm engine using an interactive selection."""
# Define shallow thinking llm engine options with their corresponding model names
SHALLOW_AGENT_OPTIONS = [
("GPT-4o-mini - Fast and efficient for quick tasks", "gpt-4o-mini"),
("GPT-4.1-nano - Ultra-lightweight model for basic operations", "gpt-4.1-nano"),
("GPT-4.1-mini - Compact model with good performance", "gpt-4.1-mini"),
("GPT-4o - Standard model with solid capabilities", "gpt-4o"),
]
choice = questionary.select(
"Select Your [Quick-Thinking LLM Engine]:",
choices=[
questionary.Choice(display, value=value)
for display, value in SHALLOW_AGENT_OPTIONS
],
instruction="\n- Use arrow keys to navigate\n- Press Enter to select",
style=questionary.Style(
[
("selected", "fg:magenta noinherit"),
("highlighted", "fg:magenta noinherit"),
("pointer", "fg:magenta noinherit"),
]
),
).ask()
if choice is None:
console.print(
"\n[red]No shallow thinking llm engine selected. Exiting...[/red]"
)
exit(1)
return choice
def select_deep_thinking_agent() -> str:
"""Select deep thinking llm engine using an interactive selection."""
# Define deep thinking llm engine options with their corresponding model names
DEEP_AGENT_OPTIONS = [
("GPT-4.1-nano - Ultra-lightweight model for basic operations", "gpt-4.1-nano"),
("GPT-4.1-mini - Compact model with good performance", "gpt-4.1-mini"),
("GPT-4o - Standard model with solid capabilities", "gpt-4o"),
("o4-mini - Specialized reasoning model (compact)", "o4-mini"),
("o3-mini - Advanced reasoning model (lightweight)", "o3-mini"),
("o3 - Full advanced reasoning model", "o3"),
("o1 - Premier reasoning and problem-solving model", "o1"),
]
choice = questionary.select(
"Select Your [Deep-Thinking LLM Engine]:",
choices=[
questionary.Choice(display, value=value)
for display, value in DEEP_AGENT_OPTIONS
],
instruction="\n- Use arrow keys to navigate\n- Press Enter to select",
style=questionary.Style(
[
("selected", "fg:magenta noinherit"),
("highlighted", "fg:magenta noinherit"),
("pointer", "fg:magenta noinherit"),
]
),
).ask()
if choice is None:
console.print("\n[red]No deep thinking llm engine selected. Exiting...[/red]")
exit(1)
return choice