TradingAgents/cli/main.py

1057 lines
40 KiB
Python

from typing import Optional
import datetime
import typer
from rich.console import Console
from rich.panel import Panel
from rich.spinner import Spinner
from rich.live import Live
from rich.columns import Columns
from rich.markdown import Markdown
from rich.layout import Layout
from rich.text import Text
from rich.live import Live
from rich.table import Table
from collections import deque
import time
from rich.tree import Tree
from rich import box
from rich.align import Align
from rich.rule import Rule
from tradingagents.graph.trading_graph import TradingAgentsGraph
from tradingagents.default_config import DEFAULT_CONFIG
from cli.models import AnalystType
from cli.utils import *
console = Console()
app = typer.Typer(
name="TradingAgents",
help="TradingAgents CLI: Multi-Agents LLM Financial Trading Framework",
add_completion=True, # Enable shell completion
)
# Create a deque to store recent messages with a maximum length
class MessageBuffer:
def __init__(self, max_length=100):
self.messages = deque(maxlen=max_length)
self.tool_calls = deque(maxlen=max_length)
self.current_report = None
self.final_report = None # Store the complete final report
self.agent_status = {
# Analyst Team
"Market Analyst": "pending",
"Social Analyst": "pending",
"News Analyst": "pending",
"Fundamentals Analyst": "pending",
# Research Team
"Bull Researcher": "pending",
"Bear Researcher": "pending",
"Research Manager": "pending",
# Trading Team
"Trader": "pending",
# Risk Management Team
"Risky Analyst": "pending",
"Neutral Analyst": "pending",
"Safe Analyst": "pending",
# Portfolio Management Team
"Portfolio Manager": "pending",
}
self.current_agent = None
self.report_sections = {
"market_report": None,
"sentiment_report": None,
"news_report": None,
"fundamentals_report": None,
"investment_plan": None,
"trader_investment_plan": None,
"final_trade_decision": None,
}
def add_message(self, message_type, content):
timestamp = datetime.datetime.now().strftime("%H:%M:%S")
self.messages.append((timestamp, message_type, content))
def add_tool_call(self, tool_name, args):
timestamp = datetime.datetime.now().strftime("%H:%M:%S")
self.tool_calls.append((timestamp, tool_name, args))
def update_agent_status(self, agent, status):
if agent in self.agent_status:
self.agent_status[agent] = status
self.current_agent = agent
def update_report_section(self, section_name, content):
if section_name in self.report_sections:
self.report_sections[section_name] = content
self._update_current_report()
def _update_current_report(self):
# For the panel display, only show the most recently updated section
latest_section = None
latest_content = None
# Find the most recently updated section
for section, content in self.report_sections.items():
if content is not None:
latest_section = section
latest_content = content
if latest_section and latest_content:
# Format the current section for display
section_titles = {
"market_report": "Market Analysis",
"sentiment_report": "Social Sentiment",
"news_report": "News Analysis",
"fundamentals_report": "Fundamentals Analysis",
"investment_plan": "Research Team Decision",
"trader_investment_plan": "Trading Team Plan",
"final_trade_decision": "Portfolio Management Decision",
}
self.current_report = (
f"### {section_titles[latest_section]}\n{latest_content}"
)
# Update the final complete report
self._update_final_report()
def _update_final_report(self):
report_parts = []
# Analyst Team Reports
if any(
self.report_sections[section]
for section in [
"market_report",
"sentiment_report",
"news_report",
"fundamentals_report",
]
):
report_parts.append("## Analyst Team Reports")
if self.report_sections["market_report"]:
report_parts.append(
f"### Market Analysis\n{self.report_sections['market_report']}"
)
if self.report_sections["sentiment_report"]:
report_parts.append(
f"### Social Sentiment\n{self.report_sections['sentiment_report']}"
)
if self.report_sections["news_report"]:
report_parts.append(
f"### News Analysis\n{self.report_sections['news_report']}"
)
if self.report_sections["fundamentals_report"]:
report_parts.append(
f"### Fundamentals Analysis\n{self.report_sections['fundamentals_report']}"
)
# Research Team Reports
if self.report_sections["investment_plan"]:
report_parts.append("## Research Team Decision")
report_parts.append(f"{self.report_sections['investment_plan']}")
# Trading Team Reports
if self.report_sections["trader_investment_plan"]:
report_parts.append("## Trading Team Plan")
report_parts.append(f"{self.report_sections['trader_investment_plan']}")
# Portfolio Management Decision
if self.report_sections["final_trade_decision"]:
report_parts.append("## Portfolio Management Decision")
report_parts.append(f"{self.report_sections['final_trade_decision']}")
self.final_report = "\n\n".join(report_parts) if report_parts else None
message_buffer = MessageBuffer()
def create_layout():
layout = Layout()
layout.split_column(
Layout(name="header", size=3),
Layout(name="main"),
Layout(name="footer", size=3),
)
layout["main"].split_column(
Layout(name="upper", ratio=3), Layout(name="analysis", ratio=5)
)
layout["upper"].split_row(
Layout(name="progress", ratio=2), Layout(name="messages", ratio=3)
)
return layout
def update_display(layout, spinner_text=None):
# Header with welcome message
layout["header"].update(
Panel(
"[bold green]Welcome to TradingAgents CLI[/bold green]\n"
"[dim]© [Tauric Research](https://github.com/TauricResearch)[/dim]",
title="Welcome to TradingAgents",
border_style="green",
padding=(1, 2),
expand=True,
)
)
# Progress panel showing agent status
progress_table = Table(
show_header=True,
header_style="bold magenta",
show_footer=False,
box=box.SIMPLE_HEAD, # Use simple header with horizontal lines
title=None, # Remove the redundant Progress title
padding=(0, 2), # Add horizontal padding
expand=True, # Make table expand to fill available space
)
progress_table.add_column("Team", style="cyan", justify="center", width=20)
progress_table.add_column("Agent", style="green", justify="center", width=20)
progress_table.add_column("Status", style="yellow", justify="center", width=20)
# Group agents by team
teams = {
"Analyst Team": [
"Market Analyst",
"Social Analyst",
"News Analyst",
"Fundamentals Analyst",
],
"Research Team": ["Bull Researcher", "Bear Researcher", "Research Manager"],
"Trading Team": ["Trader"],
"Risk Management": ["Risky Analyst", "Neutral Analyst", "Safe Analyst"],
"Portfolio Management": ["Portfolio Manager"],
}
for team, agents in teams.items():
# Add first agent with team name
first_agent = agents[0]
status = message_buffer.agent_status[first_agent]
if status == "in_progress":
spinner = Spinner(
"dots", text="[blue]in_progress[/blue]", style="bold cyan"
)
status_cell = spinner
else:
status_color = {
"pending": "yellow",
"completed": "green",
"error": "red",
}.get(status, "white")
status_cell = f"[{status_color}]{status}[/{status_color}]"
progress_table.add_row(team, first_agent, status_cell)
# Add remaining agents in team
for agent in agents[1:]:
status = message_buffer.agent_status[agent]
if status == "in_progress":
spinner = Spinner(
"dots", text="[blue]in_progress[/blue]", style="bold cyan"
)
status_cell = spinner
else:
status_color = {
"pending": "yellow",
"completed": "green",
"error": "red",
}.get(status, "white")
status_cell = f"[{status_color}]{status}[/{status_color}]"
progress_table.add_row("", agent, status_cell)
# Add horizontal line after each team
progress_table.add_row("" * 20, "" * 20, "" * 20, style="dim")
layout["progress"].update(
Panel(progress_table, title="Progress", border_style="cyan", padding=(1, 2))
)
# Messages panel showing recent messages and tool calls
messages_table = Table(
show_header=True,
header_style="bold magenta",
show_footer=False,
expand=True, # Make table expand to fill available space
box=box.MINIMAL, # Use minimal box style for a lighter look
show_lines=True, # Keep horizontal lines
padding=(0, 1), # Add some padding between columns
)
messages_table.add_column("Time", style="cyan", width=8, justify="center")
messages_table.add_column("Type", style="green", width=10, justify="center")
messages_table.add_column(
"Content", style="white", no_wrap=False, ratio=1
) # Make content column expand
# Combine tool calls and messages
all_messages = []
# Add tool calls
for timestamp, tool_name, args in message_buffer.tool_calls:
# Truncate tool call args if too long
if isinstance(args, str) and len(args) > 100:
args = args[:97] + "..."
all_messages.append((timestamp, "Tool", f"{tool_name}: {args}"))
# Add regular messages
for timestamp, msg_type, content in message_buffer.messages:
# Convert content to string if it's not already
content_str = content
if isinstance(content, list):
# Handle list of content blocks (Anthropic format)
text_parts = []
for item in content:
if isinstance(item, dict):
if item.get('type') == 'text':
text_parts.append(item.get('text', ''))
elif item.get('type') == 'tool_use':
text_parts.append(f"[Tool: {item.get('name', 'unknown')}]")
else:
text_parts.append(str(item))
content_str = ' '.join(text_parts)
elif not isinstance(content_str, str):
content_str = str(content)
# Truncate message content if too long
if len(content_str) > 200:
content_str = content_str[:197] + "..."
all_messages.append((timestamp, msg_type, content_str))
# Sort by timestamp
all_messages.sort(key=lambda x: x[0])
# Calculate how many messages we can show based on available space
# Start with a reasonable number and adjust based on content length
max_messages = 12 # Increased from 8 to better fill the space
# Get the last N messages that will fit in the panel
recent_messages = all_messages[-max_messages:]
# Add messages to table
for timestamp, msg_type, content in recent_messages:
# Format content with word wrapping
wrapped_content = Text(content, overflow="fold")
messages_table.add_row(timestamp, msg_type, wrapped_content)
if spinner_text:
messages_table.add_row("", "Spinner", spinner_text)
# Add a footer to indicate if messages were truncated
if len(all_messages) > max_messages:
messages_table.footer = (
f"[dim]Showing last {max_messages} of {len(all_messages)} messages[/dim]"
)
layout["messages"].update(
Panel(
messages_table,
title="Messages & Tools",
border_style="blue",
padding=(1, 2),
)
)
# Analysis panel showing current report
if message_buffer.current_report:
layout["analysis"].update(
Panel(
Markdown(message_buffer.current_report),
title="Current Report",
border_style="green",
padding=(1, 2),
)
)
else:
layout["analysis"].update(
Panel(
"[italic]Waiting for analysis report...[/italic]",
title="Current Report",
border_style="green",
padding=(1, 2),
)
)
# Footer with statistics
tool_calls_count = len(message_buffer.tool_calls)
llm_calls_count = sum(
1 for _, msg_type, _ in message_buffer.messages if msg_type == "Reasoning"
)
reports_count = sum(
1 for content in message_buffer.report_sections.values() if content is not None
)
stats_table = Table(show_header=False, box=None, padding=(0, 2), expand=True)
stats_table.add_column("Stats", justify="center")
stats_table.add_row(
f"Tool Calls: {tool_calls_count} | LLM Calls: {llm_calls_count} | Generated Reports: {reports_count}"
)
layout["footer"].update(Panel(stats_table, border_style="grey50"))
def get_user_selections():
"""Get all user selections before starting the analysis display."""
# Display ASCII art welcome message
with open("./cli/static/welcome.txt", "r") as f:
welcome_ascii = f.read()
# Create welcome box content
welcome_content = f"{welcome_ascii}\n"
welcome_content += "[bold green]TradingAgents: Multi-Agents LLM Financial Trading Framework - CLI[/bold green]\n\n"
welcome_content += "[bold]Workflow Steps:[/bold]\n"
welcome_content += "I. Analyst Team → II. Research Team → III. Trader → IV. Risk Management → V. Portfolio Management\n\n"
welcome_content += (
"[dim]Built by [Tauric Research](https://github.com/TauricResearch)[/dim]"
)
# Create and center the welcome box
welcome_box = Panel(
welcome_content,
border_style="green",
padding=(1, 2),
title="Welcome to TradingAgents",
subtitle="Multi-Agents LLM Financial Trading Framework",
)
console.print(Align.center(welcome_box))
console.print() # Add a blank line after the welcome box
# Create a boxed questionnaire for each step
def create_question_box(title, prompt, default=None):
box_content = f"[bold]{title}[/bold]\n"
box_content += f"[dim]{prompt}[/dim]"
if default:
box_content += f"\n[dim]Default: {default}[/dim]"
return Panel(box_content, border_style="blue", padding=(1, 2))
# Step 1: Ticker symbol
console.print(
create_question_box(
"Step 1: Ticker Symbol", "Enter the ticker symbol to analyze", "SPY"
)
)
selected_ticker = get_ticker()
# Step 2: Analysis date
default_date = datetime.datetime.now().strftime("%Y-%m-%d")
console.print(
create_question_box(
"Step 2: Analysis Date",
"Enter the analysis date (YYYY-MM-DD)",
default_date,
)
)
analysis_date = get_analysis_date()
# Step 3: Select analysts
console.print(
create_question_box(
"Step 3: Analysts Team", "Select your LLM analyst agents for the analysis"
)
)
selected_analysts = select_analysts()
console.print(
f"[green]Selected analysts:[/green] {', '.join(analyst.value for analyst in selected_analysts)}"
)
# Step 4: Research depth
console.print(
create_question_box(
"Step 4: Research Depth", "Select your research depth level"
)
)
selected_research_depth = select_research_depth()
# Step 5: OpenAI backend
console.print(
create_question_box(
"Step 5: OpenAI backend", "Select which service to talk to"
)
)
selected_llm_provider, backend_url = select_llm_provider()
# Step 6: Thinking agents
console.print(
create_question_box(
"Step 6: Thinking Agents", "Select your thinking agents for analysis"
)
)
selected_shallow_thinker = select_shallow_thinking_agent(selected_llm_provider)
selected_deep_thinker = select_deep_thinking_agent(selected_llm_provider)
return {
"ticker": selected_ticker,
"analysis_date": analysis_date,
"analysts": selected_analysts,
"research_depth": selected_research_depth,
"llm_provider": selected_llm_provider.lower(),
"backend_url": backend_url,
"shallow_thinker": selected_shallow_thinker,
"deep_thinker": selected_deep_thinker,
}
def get_ticker():
"""Get ticker symbol from user input."""
return typer.prompt("", default="SPY")
def get_analysis_date():
"""Get the analysis date from user input."""
while True:
date_str = typer.prompt(
"", default=datetime.datetime.now().strftime("%Y-%m-%d")
)
try:
# Validate date format and ensure it's not in the future
analysis_date = datetime.datetime.strptime(date_str, "%Y-%m-%d")
if analysis_date.date() > datetime.datetime.now().date():
console.print("[red]Error: Analysis date cannot be in the future[/red]")
continue
return date_str
except ValueError:
console.print(
"[red]Error: Invalid date format. Please use YYYY-MM-DD[/red]"
)
def display_complete_report(final_state):
"""Display the complete analysis report with team-based panels."""
console.print("\n[bold green]Complete Analysis Report[/bold green]\n")
# I. Analyst Team Reports
analyst_reports = []
# Market Analyst Report
if final_state.get("market_report"):
analyst_reports.append(
Panel(
Markdown(final_state["market_report"]),
title="Market Analyst",
border_style="blue",
padding=(1, 2),
)
)
# Social Analyst Report
if final_state.get("sentiment_report"):
analyst_reports.append(
Panel(
Markdown(final_state["sentiment_report"]),
title="Social Analyst",
border_style="blue",
padding=(1, 2),
)
)
# News Analyst Report
if final_state.get("news_report"):
analyst_reports.append(
Panel(
Markdown(final_state["news_report"]),
title="News Analyst",
border_style="blue",
padding=(1, 2),
)
)
# Fundamentals Analyst Report
if final_state.get("fundamentals_report"):
analyst_reports.append(
Panel(
Markdown(final_state["fundamentals_report"]),
title="Fundamentals Analyst",
border_style="blue",
padding=(1, 2),
)
)
if analyst_reports:
console.print(
Panel(
Columns(analyst_reports, equal=True, expand=True),
title="I. Analyst Team Reports",
border_style="cyan",
padding=(1, 2),
)
)
# II. Research Team Reports
if final_state.get("investment_debate_state"):
research_reports = []
debate_state = final_state["investment_debate_state"]
# Bull Researcher Analysis
if debate_state.get("bull_history"):
research_reports.append(
Panel(
Markdown(debate_state["bull_history"]),
title="Bull Researcher",
border_style="blue",
padding=(1, 2),
)
)
# Bear Researcher Analysis
if debate_state.get("bear_history"):
research_reports.append(
Panel(
Markdown(debate_state["bear_history"]),
title="Bear Researcher",
border_style="blue",
padding=(1, 2),
)
)
# Research Manager Decision
if debate_state.get("judge_decision"):
research_reports.append(
Panel(
Markdown(debate_state["judge_decision"]),
title="Research Manager",
border_style="blue",
padding=(1, 2),
)
)
if research_reports:
console.print(
Panel(
Columns(research_reports, equal=True, expand=True),
title="II. Research Team Decision",
border_style="magenta",
padding=(1, 2),
)
)
# III. Trading Team Reports
if final_state.get("trader_investment_plan"):
console.print(
Panel(
Panel(
Markdown(final_state["trader_investment_plan"]),
title="Trader",
border_style="blue",
padding=(1, 2),
),
title="III. Trading Team Plan",
border_style="yellow",
padding=(1, 2),
)
)
# IV. Risk Management Team Reports
if final_state.get("risk_debate_state"):
risk_reports = []
risk_state = final_state["risk_debate_state"]
# Aggressive (Risky) Analyst Analysis
if risk_state.get("risky_history"):
risk_reports.append(
Panel(
Markdown(risk_state["risky_history"]),
title="Aggressive Analyst",
border_style="blue",
padding=(1, 2),
)
)
# Conservative (Safe) Analyst Analysis
if risk_state.get("safe_history"):
risk_reports.append(
Panel(
Markdown(risk_state["safe_history"]),
title="Conservative Analyst",
border_style="blue",
padding=(1, 2),
)
)
# Neutral Analyst Analysis
if risk_state.get("neutral_history"):
risk_reports.append(
Panel(
Markdown(risk_state["neutral_history"]),
title="Neutral Analyst",
border_style="blue",
padding=(1, 2),
)
)
if risk_reports:
console.print(
Panel(
Columns(risk_reports, equal=True, expand=True),
title="IV. Risk Management Team Decision",
border_style="red",
padding=(1, 2),
)
)
# V. Portfolio Manager Decision
if risk_state.get("judge_decision"):
console.print(
Panel(
Panel(
Markdown(risk_state["judge_decision"]),
title="Portfolio Manager",
border_style="blue",
padding=(1, 2),
),
title="V. Portfolio Manager Decision",
border_style="green",
padding=(1, 2),
)
)
def update_research_team_status(status):
"""Update status for all research team members and trader."""
research_team = ["Bull Researcher", "Bear Researcher", "Research Manager", "Trader"]
for agent in research_team:
message_buffer.update_agent_status(agent, status)
def extract_content_string(content):
"""Extract string content from various message formats."""
if isinstance(content, str):
return content
elif isinstance(content, list):
# Handle Anthropic's list format
text_parts = []
for item in content:
if isinstance(item, dict):
if item.get('type') == 'text':
text_parts.append(item.get('text', ''))
elif item.get('type') == 'tool_use':
text_parts.append(f"[Tool: {item.get('name', 'unknown')}]")
else:
text_parts.append(str(item))
return ' '.join(text_parts)
else:
return str(content)
def run_analysis():
# First get all user selections
selections = get_user_selections()
# Create config with selected research depth
config = DEFAULT_CONFIG.copy()
config["max_debate_rounds"] = selections["research_depth"]
config["max_risk_discuss_rounds"] = selections["research_depth"]
config["quick_think_llm"] = selections["shallow_thinker"]
config["deep_think_llm"] = selections["deep_thinker"]
config["backend_url"] = selections["backend_url"]
config["llm_provider"] = selections["llm_provider"].lower()
# Initialize the graph
graph = TradingAgentsGraph(
[analyst.value for analyst in selections["analysts"]], config=config, debug=True
)
# Now start the display layout
layout = create_layout()
with Live(layout, refresh_per_second=4) as live:
# Initial display
update_display(layout)
# Add initial messages
message_buffer.add_message("System", f"Selected ticker: {selections['ticker']}")
message_buffer.add_message(
"System", f"Analysis date: {selections['analysis_date']}"
)
message_buffer.add_message(
"System",
f"Selected analysts: {', '.join(analyst.value for analyst in selections['analysts'])}",
)
update_display(layout)
# Reset agent statuses
for agent in message_buffer.agent_status:
message_buffer.update_agent_status(agent, "pending")
# Reset report sections
for section in message_buffer.report_sections:
message_buffer.report_sections[section] = None
message_buffer.current_report = None
message_buffer.final_report = None
# Update agent status to in_progress for the first analyst
first_analyst = f"{selections['analysts'][0].value.capitalize()} Analyst"
message_buffer.update_agent_status(first_analyst, "in_progress")
update_display(layout)
# Create spinner text
spinner_text = (
f"Analyzing {selections['ticker']} on {selections['analysis_date']}..."
)
update_display(layout, spinner_text)
# Initialize state and get graph args
init_agent_state = graph.propagator.create_initial_state(
selections["ticker"], selections["analysis_date"]
)
args = graph.propagator.get_graph_args()
# Stream the analysis
trace = []
for chunk in graph.graph.stream(init_agent_state, **args):
if len(chunk["messages"]) > 0:
# Get the last message from the chunk
last_message = chunk["messages"][-1]
# Extract message content and type
if hasattr(last_message, "content"):
content = extract_content_string(last_message.content) # Use the helper function
msg_type = "Reasoning"
else:
content = str(last_message)
msg_type = "System"
# Add message to buffer
message_buffer.add_message(msg_type, content)
# If it's a tool call, add it to tool calls
if hasattr(last_message, "tool_calls"):
for tool_call in last_message.tool_calls:
# Handle both dictionary and object tool calls
if isinstance(tool_call, dict):
message_buffer.add_tool_call(
tool_call["name"], tool_call["args"]
)
else:
message_buffer.add_tool_call(tool_call.name, tool_call.args)
# Update reports and agent status based on chunk content
# Analyst Team Reports
if "market_report" in chunk and chunk["market_report"]:
message_buffer.update_report_section(
"market_report", chunk["market_report"]
)
message_buffer.update_agent_status("Market Analyst", "completed")
# Set next analyst to in_progress
if "social" in selections["analysts"]:
message_buffer.update_agent_status(
"Social Analyst", "in_progress"
)
if "sentiment_report" in chunk and chunk["sentiment_report"]:
message_buffer.update_report_section(
"sentiment_report", chunk["sentiment_report"]
)
message_buffer.update_agent_status("Social Analyst", "completed")
# Set next analyst to in_progress
if "news" in selections["analysts"]:
message_buffer.update_agent_status(
"News Analyst", "in_progress"
)
if "news_report" in chunk and chunk["news_report"]:
message_buffer.update_report_section(
"news_report", chunk["news_report"]
)
message_buffer.update_agent_status("News Analyst", "completed")
# Set next analyst to in_progress
if "fundamentals" in selections["analysts"]:
message_buffer.update_agent_status(
"Fundamentals Analyst", "in_progress"
)
if "fundamentals_report" in chunk and chunk["fundamentals_report"]:
message_buffer.update_report_section(
"fundamentals_report", chunk["fundamentals_report"]
)
message_buffer.update_agent_status(
"Fundamentals Analyst", "completed"
)
# Set all research team members to in_progress
update_research_team_status("in_progress")
# Research Team - Handle Investment Debate State
if (
"investment_debate_state" in chunk
and chunk["investment_debate_state"]
):
debate_state = chunk["investment_debate_state"]
# Update Bull Researcher status and report
if "bull_history" in debate_state and debate_state["bull_history"]:
# Keep all research team members in progress
update_research_team_status("in_progress")
# Extract latest bull response
bull_responses = debate_state["bull_history"].split("\n")
latest_bull = bull_responses[-1] if bull_responses else ""
if latest_bull:
message_buffer.add_message("Reasoning", latest_bull)
# Update research report with bull's latest analysis
message_buffer.update_report_section(
"investment_plan",
f"### Bull Researcher Analysis\n{latest_bull}",
)
# Update Bear Researcher status and report
if "bear_history" in debate_state and debate_state["bear_history"]:
# Keep all research team members in progress
update_research_team_status("in_progress")
# Extract latest bear response
bear_responses = debate_state["bear_history"].split("\n")
latest_bear = bear_responses[-1] if bear_responses else ""
if latest_bear:
message_buffer.add_message("Reasoning", latest_bear)
# Update research report with bear's latest analysis
message_buffer.update_report_section(
"investment_plan",
f"{message_buffer.report_sections['investment_plan']}\n\n### Bear Researcher Analysis\n{latest_bear}",
)
# Update Research Manager status and final decision
if (
"judge_decision" in debate_state
and debate_state["judge_decision"]
):
# Keep all research team members in progress until final decision
update_research_team_status("in_progress")
message_buffer.add_message(
"Reasoning",
f"Research Manager: {debate_state['judge_decision']}",
)
# Update research report with final decision
message_buffer.update_report_section(
"investment_plan",
f"{message_buffer.report_sections['investment_plan']}\n\n### Research Manager Decision\n{debate_state['judge_decision']}",
)
# Mark all research team members as completed
update_research_team_status("completed")
# Set first risk analyst to in_progress
message_buffer.update_agent_status(
"Risky Analyst", "in_progress"
)
# Trading Team
if (
"trader_investment_plan" in chunk
and chunk["trader_investment_plan"]
):
message_buffer.update_report_section(
"trader_investment_plan", chunk["trader_investment_plan"]
)
# Set first risk analyst to in_progress
message_buffer.update_agent_status("Risky Analyst", "in_progress")
# Risk Management Team - Handle Risk Debate State
if "risk_debate_state" in chunk and chunk["risk_debate_state"]:
risk_state = chunk["risk_debate_state"]
# Update Risky Analyst status and report
if (
"current_risky_response" in risk_state
and risk_state["current_risky_response"]
):
message_buffer.update_agent_status(
"Risky Analyst", "in_progress"
)
message_buffer.add_message(
"Reasoning",
f"Risky Analyst: {risk_state['current_risky_response']}",
)
# Update risk report with risky analyst's latest analysis only
message_buffer.update_report_section(
"final_trade_decision",
f"### Risky Analyst Analysis\n{risk_state['current_risky_response']}",
)
# Update Safe Analyst status and report
if (
"current_safe_response" in risk_state
and risk_state["current_safe_response"]
):
message_buffer.update_agent_status(
"Safe Analyst", "in_progress"
)
message_buffer.add_message(
"Reasoning",
f"Safe Analyst: {risk_state['current_safe_response']}",
)
# Update risk report with safe analyst's latest analysis only
message_buffer.update_report_section(
"final_trade_decision",
f"### Safe Analyst Analysis\n{risk_state['current_safe_response']}",
)
# Update Neutral Analyst status and report
if (
"current_neutral_response" in risk_state
and risk_state["current_neutral_response"]
):
message_buffer.update_agent_status(
"Neutral Analyst", "in_progress"
)
message_buffer.add_message(
"Reasoning",
f"Neutral Analyst: {risk_state['current_neutral_response']}",
)
# Update risk report with neutral analyst's latest analysis only
message_buffer.update_report_section(
"final_trade_decision",
f"### Neutral Analyst Analysis\n{risk_state['current_neutral_response']}",
)
# Update Portfolio Manager status and final decision
if "judge_decision" in risk_state and risk_state["judge_decision"]:
message_buffer.update_agent_status(
"Portfolio Manager", "in_progress"
)
message_buffer.add_message(
"Reasoning",
f"Portfolio Manager: {risk_state['judge_decision']}",
)
# Update risk report with final decision only
message_buffer.update_report_section(
"final_trade_decision",
f"### Portfolio Manager Decision\n{risk_state['judge_decision']}",
)
# Mark risk analysts as completed
message_buffer.update_agent_status("Risky Analyst", "completed")
message_buffer.update_agent_status("Safe Analyst", "completed")
message_buffer.update_agent_status(
"Neutral Analyst", "completed"
)
message_buffer.update_agent_status(
"Portfolio Manager", "completed"
)
# Update the display
update_display(layout)
trace.append(chunk)
# Get final state and decision
final_state = trace[-1]
decision = graph.process_signal(final_state["final_trade_decision"])
# Update all agent statuses to completed
for agent in message_buffer.agent_status:
message_buffer.update_agent_status(agent, "completed")
message_buffer.add_message(
"Analysis", f"Completed analysis for {selections['analysis_date']}"
)
# Update final report sections
for section in message_buffer.report_sections.keys():
if section in final_state:
message_buffer.update_report_section(section, final_state[section])
# Display the complete final report
display_complete_report(final_state)
update_display(layout)
@app.command()
def analyze():
run_analysis()
if __name__ == "__main__":
app()