TradingAgents/main.py
luohy15 7bcc2cbd8a Update configuration documentation for Alpha Vantage data vendor
Add data vendor configuration examples in README and main.py showing how to configure Alpha Vantage as the primary data provider. Update documentation to reflect the current default behavior of using Alpha Vantage for real-time market data access.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-26 23:52:26 +08:00

29 lines
1.2 KiB
Python

from tradingagents.graph.trading_graph import TradingAgentsGraph
from tradingagents.default_config import DEFAULT_CONFIG
# Create a custom config
config = DEFAULT_CONFIG.copy()
config["llm_provider"] = "google" # Use a different model
config["backend_url"] = "https://generativelanguage.googleapis.com/v1" # Use a different backend
config["deep_think_llm"] = "gemini-2.0-flash" # Use a different model
config["quick_think_llm"] = "gemini-2.0-flash" # Use a different model
config["max_debate_rounds"] = 1 # Increase debate rounds
# Configure data vendors (default uses Alpha Vantage for real-time data)
config["data_vendors"] = {
"core_stock_apis": "alpha_vantage", # Options: alpha_vantage, yahoo_finance, local
"technical_indicators": "alpha_vantage", # Options: alpha_vantage, yahoo_finance, local
"fundamental_data": "alpha_vantage", # Options: alpha_vantage, openai, local
"news_data": "alpha_vantage", # Options: alpha_vantage, openai, google, local
}
# Initialize with custom config
ta = TradingAgentsGraph(debug=True, config=config)
# forward propagate
_, decision = ta.propagate("NVDA", "2024-05-10")
print(decision)
# Memorize mistakes and reflect
# ta.reflect_and_remember(1000) # parameter is the position returns