TradingAgents/cli/utils.py
maxer137 99789f9cd1 Add support for other backends, such as OpenRouter and olama
This aims to offer alternative OpenAI capable api's.
This offers people to experiment with running the application locally
2025-06-11 14:19:25 +02:00

247 lines
8.5 KiB
Python

import questionary
from typing import List, Optional, Tuple, Dict
from cli.models import AnalystType
ANALYST_ORDER = [
("Market Analyst", AnalystType.MARKET),
("Social Media Analyst", AnalystType.SOCIAL),
("News Analyst", AnalystType.NEWS),
("Fundamentals Analyst", AnalystType.FUNDAMENTALS),
]
def get_ticker() -> str:
"""Prompt the user to enter a ticker symbol."""
ticker = questionary.text(
"Enter the ticker symbol to analyze:",
validate=lambda x: len(x.strip()) > 0 or "Please enter a valid ticker symbol.",
style=questionary.Style(
[
("text", "fg:green"),
("highlighted", "noinherit"),
]
),
).ask()
if not ticker:
console.print("\n[red]No ticker symbol provided. Exiting...[/red]")
exit(1)
return ticker.strip().upper()
def get_analysis_date() -> str:
"""Prompt the user to enter a date in YYYY-MM-DD format."""
import re
from datetime import datetime
def validate_date(date_str: str) -> bool:
if not re.match(r"^\d{4}-\d{2}-\d{2}$", date_str):
return False
try:
datetime.strptime(date_str, "%Y-%m-%d")
return True
except ValueError:
return False
date = questionary.text(
"Enter the analysis date (YYYY-MM-DD):",
validate=lambda x: validate_date(x.strip())
or "Please enter a valid date in YYYY-MM-DD format.",
style=questionary.Style(
[
("text", "fg:green"),
("highlighted", "noinherit"),
]
),
).ask()
if not date:
console.print("\n[red]No date provided. Exiting...[/red]")
exit(1)
return date.strip()
def select_analysts() -> List[AnalystType]:
"""Select analysts using an interactive checkbox."""
choices = questionary.checkbox(
"Select Your [Analysts Team]:",
choices=[
questionary.Choice(display, value=value) for display, value in ANALYST_ORDER
],
instruction="\n- Press Space to select/unselect analysts\n- Press 'a' to select/unselect all\n- Press Enter when done",
validate=lambda x: len(x) > 0 or "You must select at least one analyst.",
style=questionary.Style(
[
("checkbox-selected", "fg:green"),
("selected", "fg:green noinherit"),
("highlighted", "noinherit"),
("pointer", "noinherit"),
]
),
).ask()
if not choices:
console.print("\n[red]No analysts selected. Exiting...[/red]")
exit(1)
return choices
def select_research_depth() -> int:
"""Select research depth using an interactive selection."""
# Define research depth options with their corresponding values
DEPTH_OPTIONS = [
("Shallow - Quick research, few debate and strategy discussion rounds", 1),
("Medium - Middle ground, moderate debate rounds and strategy discussion", 3),
("Deep - Comprehensive research, in depth debate and strategy discussion", 5),
]
choice = questionary.select(
"Select Your [Research Depth]:",
choices=[
questionary.Choice(display, value=value) for display, value in DEPTH_OPTIONS
],
instruction="\n- Use arrow keys to navigate\n- Press Enter to select",
style=questionary.Style(
[
("selected", "fg:yellow noinherit"),
("highlighted", "fg:yellow noinherit"),
("pointer", "fg:yellow noinherit"),
]
),
).ask()
if choice is None:
console.print("\n[red]No research depth selected. Exiting...[/red]")
exit(1)
return choice
def select_shallow_thinking_agent(backend) -> str:
"""Select shallow thinking llm engine using an interactive selection."""
# Define shallow thinking llm engine options with their corresponding model names
SHALLOW_AGENT_OPTIONS = {
"https://api.openai.com/v1": [
("GPT-4o-mini - Fast and efficient for quick tasks", "gpt-4o-mini"),
("GPT-4.1-nano - Ultra-lightweight model for basic operations", "gpt-4.1-nano"),
("GPT-4.1-mini - Compact model with good performance", "gpt-4.1-mini"),
("GPT-4o - Standard model with solid capabilities", "gpt-4o"),
],
"https://openrouter.ai/api/v1": [
("Meta: Llama 4 Scout", "meta-llama/llama-4-scout:free"),
("Meta: Llama 3.3 8B Instruct - A lightweight and ultra-fast variant of Llama 3.3 70B", "meta-llama/llama-3.3-8b-instruct:free"),
("google/gemini-2.0-flash-exp:free - Gemini Flash 2.0 offers a significantly faster time to first token", "google/gemini-2.0-flash-exp:free"),
],
"http://localhost:11434/v1": [
("llama3.2 local", "llama3.2"),
]
}
choice = questionary.select(
"Select Your [Quick-Thinking LLM Engine]:",
choices=[
questionary.Choice(display, value=value)
for display, value in SHALLOW_AGENT_OPTIONS[backend]
],
instruction="\n- Use arrow keys to navigate\n- Press Enter to select",
style=questionary.Style(
[
("selected", "fg:magenta noinherit"),
("highlighted", "fg:magenta noinherit"),
("pointer", "fg:magenta noinherit"),
]
),
).ask()
if choice is None:
console.print(
"\n[red]No shallow thinking llm engine selected. Exiting...[/red]"
)
exit(1)
return choice
def select_deep_thinking_agent(backend) -> str:
"""Select deep thinking llm engine using an interactive selection."""
# Define deep thinking llm engine options with their corresponding model names
DEEP_AGENT_OPTIONS = {
"https://api.openai.com/v1": [
("GPT-4.1-nano - Ultra-lightweight model for basic operations", "gpt-4.1-nano"),
("GPT-4.1-mini - Compact model with good performance", "gpt-4.1-mini"),
("GPT-4o - Standard model with solid capabilities", "gpt-4o"),
("o4-mini - Specialized reasoning model (compact)", "o4-mini"),
("o3-mini - Advanced reasoning model (lightweight)", "o3-mini"),
("o3 - Full advanced reasoning model", "o3"),
("o1 - Premier reasoning and problem-solving model", "o1"),
],
"https://openrouter.ai/api/v1": [
("DeepSeek V3 - a 685B-parameter, mixture-of-experts model", "deepseek/deepseek-chat-v3-0324:free"),
("deepseek - latest iteration of the flagship chat model family from the DeepSeek team.", "deepseek/deepseek-chat-v3-0324:free"),
],
"http://localhost:11434/v1": [
("qwen3", "qwen3"),
]
}
choice = questionary.select(
"Select Your [Deep-Thinking LLM Engine]:",
choices=[
questionary.Choice(display, value=value)
for display, value in DEEP_AGENT_OPTIONS[backend]
],
instruction="\n- Use arrow keys to navigate\n- Press Enter to select",
style=questionary.Style(
[
("selected", "fg:magenta noinherit"),
("highlighted", "fg:magenta noinherit"),
("pointer", "fg:magenta noinherit"),
]
),
).ask()
if choice is None:
console.print("\n[red]No deep thinking llm engine selected. Exiting...[/red]")
exit(1)
return choice
def select_openai_backend() -> str:
"""Select the OpenAI api url using interactive selection."""
# Define OpenAI api options with their corresponding endpoints
OPENAI_BASE_URLS = [
("OpenAI - Requires an OpenAPI Key", "https://api.openai.com/v1"),
("Openrouter - Requires an OpenRouter API Key", "https://openrouter.ai/api/v1"),
("Ollama - Local", "http://localhost:11434/v1")
]
choice = questionary.select(
"Select your [OpenAI endpoint]:",
choices=[
questionary.Choice(display, value=value)
for display, value in OPENAI_BASE_URLS
],
instruction="\n- Use arrow keys to navigate\n- Press Enter to select",
style=questionary.Style(
[
("selected", "fg:magenta noinherit"),
("highlighted", "fg:magenta noinherit"),
("pointer", "fg:magenta noinherit"),
]
),
).ask()
if choice is None:
console.print("\n[red]no OpenAI backend selected. Exiting...[/red]")
exit(1)
return choice