233 lines
8.3 KiB
Python
Raw Permalink Normal View History

import os
import sys
import re
from agbench.tabulate_cmd import default_tabulate
import json
import pandas as pd
import sqlite3
import glob
import numpy as np
sys.path.append(os.path.dirname(__file__))
from assistantbench_evaluator import question_scorer
EXCLUDE_DIR_NAMES = ["__pycache__"]
def normalize_answer(a):
# Lower case
# Trim (left and right)
# standardize comma separated values
# Replace multiple spaces with one space
# Remove trailing punctuation
norm_answer = ", ".join(a.strip().lower().split(","))
norm_answer = re.sub(r"[\.\!\?]+$", "", re.sub(r"\s+", " ", norm_answer))
return norm_answer
def scorer(instance_dir):
# Read the expected answer
expected_answer_file = os.path.join(instance_dir, "expected_answer.txt")
if not os.path.isfile(expected_answer_file):
return None
expected_answer = None
with open(expected_answer_file, "rt") as fh:
expected_answer = fh.read().strip()
# Read the console
console_log_file = os.path.join(instance_dir, "console_log.txt")
if not os.path.isfile(console_log_file):
return None
console_log = ""
with open(console_log_file, "rt") as fh:
console_log = fh.read()
final_answer = None
m = re.search(r"FINAL ANSWER:(.*?)\n", console_log, re.DOTALL)
if m:
final_answer = m.group(1).strip()
# Missing the final answer line
if final_answer is None:
return None
# get accuracy from assistantbench util, no normalization done for accuracy
accuracy = question_scorer(final_answer, expected_answer)
n_ex = normalize_answer(expected_answer)
n_final = normalize_answer(final_answer)
return (accuracy, n_ex, n_final)
def get_number_of_chat_messages(chat_messages_dir):
result = 0
for file in glob.glob(f"{chat_messages_dir}/*_messages.json"):
with open(file, "r") as f:
content = json.load(f)
for agent, messages in content.items():
result += len(messages)
return result
def main(args):
parsed_args, all_results = default_tabulate(args, scorer=scorer)
excel_path = parsed_args.excel
if excel_path:
excel_dir = os.path.dirname(excel_path) or "."
if not os.path.exists(excel_dir):
os.makedirs(excel_dir, exist_ok=True)
if not excel_path.endswith((".xlsx", ".xls")):
excel_path += ".xlsx"
runlogs = (
parsed_args.runlogs
if parsed_args.runlogs.endswith("/")
else parsed_args.runlogs + "/"
)
if os.path.isdir(runlogs):
task_ids = sorted(
[
task_id
for task_id in os.listdir(runlogs)
if task_id not in EXCLUDE_DIR_NAMES
],
key=lambda s: os.path.getmtime(os.path.join(parsed_args.runlogs, s)),
)
else:
raise ValueError("please input a valid directory to tabulate result")
trials = (
sorted(os.listdir(f"{runlogs}{task_ids[0]}"), key=lambda x: int(x))
if len(task_ids) > 0
else []
)
dbnames = [
[f"{runlogs}{task_id}/{trial}/telemetry.db" for task_id in task_ids]
for trial in trials
]
query = """
SELECT cost, session_id, response, start_time, end_time
FROM (
SELECT invocation_id, cost, session_id, response, start_time, end_time,
ROW_NUMBER() OVER (PARTITION BY invocation_id ORDER BY start_time) as rn
FROM chat_completions
)
WHERE rn = 1;
"""
with pd.ExcelWriter(excel_path, engine="openpyxl") as writer:
for trial_index, each_trial in enumerate(dbnames):
result_df = pd.DataFrame(
columns=[
"id",
"status",
"expected_answer",
"final_answer",
"cost",
"latency",
"num_of_llm_requests",
"num_of_chat_messages",
"prompt_tokens",
"completion_tokens",
"total_tokens",
"model",
]
)
result_df_type_mapping = {
"id": str,
"status": bool,
"expected_answer": str,
"final_answer": str,
"cost": float,
"latency": float,
"num_of_llm_requests": int,
"num_of_chat_messages": int,
"prompt_tokens": int,
"completion_tokens": int,
"total_tokens": int,
}
for dbname, scorer_results in zip(each_trial, all_results):
task_id = scorer_results[0]
scorer_result = scorer_results[trial_index + 1]
status, expected_answer, final_answer = (
scorer_result if scorer_result else (False, "", "")
)
con = sqlite3.connect(dbname)
# TODO: if large amount of data, add chunksize
telemetry_df = pd.read_sql_query(query, con)
earliest_starttime = pd.to_datetime(
telemetry_df["start_time"], format="%Y-%m-%d %H:%M:%S.%f"
).min()
latest_endtime = pd.to_datetime(
telemetry_df["end_time"], format="%Y-%m-%d %H:%M:%S.%f"
).max()
num_of_chat_messages = get_number_of_chat_messages(
chat_messages_dir=os.path.dirname(dbname)
)
result = {
"id": task_id,
"status": status,
"expected_answer": expected_answer,
"final_answer": final_answer,
"cost": telemetry_df["cost"].sum(),
"latency": (
latest_endtime - earliest_starttime
).total_seconds(),
"num_of_llm_requests": len(telemetry_df),
"num_of_chat_messages": num_of_chat_messages,
"prompt_tokens": telemetry_df["response"]
.apply(
lambda x: json.loads(x)["usage"]["prompt_tokens"]
if "usage" in json.loads(x)
and "prompt_tokens" in json.loads(x)["usage"]
else 0
)
.sum(),
"completion_tokens": telemetry_df["response"]
.apply(
lambda x: json.loads(x)["usage"]["completion_tokens"]
if "usage" in json.loads(x)
and "completion_tokens" in json.loads(x)["usage"]
else 0
)
.sum(),
"total_tokens": telemetry_df["response"]
.apply(
lambda x: json.loads(x)["usage"]["total_tokens"]
if "usage" in json.loads(x)
and "total_tokens" in json.loads(x)["usage"]
else 0
)
.sum(),
"model": telemetry_df["response"]
.apply(
lambda x: json.loads(x)["model"]
if "model" in json.loads(x)
else ""
)
.unique(),
}
result_df = result_df.astype(result_df_type_mapping)
result_df = pd.concat(
[result_df, pd.DataFrame([result])], ignore_index=True
)
result_df.to_excel(
writer, sheet_name=f"trial_{trial_index}", index=False
)
if __name__ == "__main__" and __package__ is None:
main(sys.argv)